IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v630y2023ics0378437123008129.html
   My bibliography  Save this article

Fragmentation from group interactions: A higher-order adaptive voter model

Author

Listed:
  • Papanikolaou, Nikos
  • Lambiotte, Renaud
  • Vaccario, Giacomo

Abstract

The adaptive voter model allows for studying the interplay between homophily, the tendency of like-minded individuals to attract each other, and social influence, the tendency for connected individuals to influence each other. However, it relies on graphs, and thus, it only considers pairwise interactions. We develop a minimal extension of the adaptive voter model to hypergraphs to study the interactions of groups of arbitrary sizes using a threshold parameter. We study S-uniform hypergraphs as initial configurations. With numerical simulations, we find new phenomena not found in the counterpart pairwise models, such as the formation of bands in the magnetization and the lack of an equilibrium state. Finally, we develop an analytical model using a sparse hypergraph approximation that accurately predicts the bands’ boundaries and height.

Suggested Citation

  • Papanikolaou, Nikos & Lambiotte, Renaud & Vaccario, Giacomo, 2023. "Fragmentation from group interactions: A higher-order adaptive voter model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
  • Handle: RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123008129
    DOI: 10.1016/j.physa.2023.129257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123008129
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Goban & R. B. Hutson & G. E. Marti & S. L. Campbell & M. A. Perlin & P. S. Julienne & J. P. D’Incao & A. M. Rey & J. Ye, 2018. "Emergence of multi-body interactions in a fermionic lattice clock," Nature, Nature, vol. 563(7731), pages 369-373, November.
    2. Iacopo Iacopini & Giovanni Petri & Alain Barrat & Vito Latora, 2019. "Simplicial models of social contagion," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Hołyst, Janusz A. & Kacperski, Krzysztof & Schweitzer, Frank, 2000. "Phase transitions in social impact models of opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 199-210.
    4. Guilherme Ferraz de Arruda & Giovanni Petri & Pablo Martin Rodriguez & Yamir Moreno, 2023. "Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Carla Taramasco & Jean-Philippe Cointet & Camille Roth, 2010. "Academic team formation as evolving hypergraphs," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 721-740, December.
    6. Jonathan M. Levine & Jordi Bascompte & Peter B. Adler & Stefano Allesina, 2017. "Beyond pairwise mechanisms of species coexistence in complex communities," Nature, Nature, vol. 546(7656), pages 56-64, June.
    7. Eyal Bairey & Eric D. Kelsic & Roy Kishony, 2016. "High-order species interactions shape ecosystem diversity," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Gerrit Ansmann & Tobias Bollenbach, 2021. "Building clone-consistent ecosystem models," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.
    3. Alicia Sanchez-Gorostiaga & Djordje Bajić & Melisa L Osborne & Juan F Poyatos & Alvaro Sanchez, 2019. "High-order interactions distort the functional landscape of microbial consortia," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-34, December.
    4. Ramasamy, Mohanasubha & Devarajan, Subhasri & Kumarasamy, Suresh & Rajagopal, Karthikeyan, 2022. "Effect of higher-order interactions on synchronization of neuron models with electromagnetic induction," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    5. Chen, Shiliang & Liu, Xiang & He, Qiang & Zhou, Shurong, 2022. "Higher-order interactions on disease transmission can reverse the dilution effect or weaken the amplification effect to unimodal pattern," Ecological Modelling, Elsevier, vol. 474(C).
    6. Huan Wang & Chuang Ma & Han-Shuang Chen & Ying-Cheng Lai & Hai-Feng Zhang, 2022. "Full reconstruction of simplicial complexes from binary contagion and Ising data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yao-feng Zhang & Hong-ye Duan & Zhi-lin Geng, 2017. "Evolutionary Mechanism of Frangibility in Social Consensus System Based on Negative Emotions Spread," Complexity, Hindawi, vol. 2017, pages 1-8, June.
    8. Hutzler, S. & Sommer, C. & Richmond, P., 2016. "On the relationship between income, fertility rates and the state of democracy in society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 9-18.
    9. Galam, Serge, 2021. "Will Trump win again in the 2020 election? An answer from a sociophysics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    10. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. David García-Callejas & Ignasi Bartomeus & Oscar Godoy, 2021. "The spatial configuration of biotic interactions shapes coexistence-area relationships in an annual plant community," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Hang-Hyun Jo & Jeoung-Yoo Kim, 2012. "Competitive Targeted Marketing," ISER Discussion Paper 0834, Institute of Social and Economic Research, Osaka University.
    13. Gong, Chang & Li, Jichao & Qian, Liwei & Li, Siwei & Yang, Zhiwei & Yang, Kewei, 2024. "HMSL: Source localization based on higher-order Markov propagation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    14. Daniel Reisinger & Fabian Tschofenig & Raven Adam & Marie Lisa Kogler & Manfred Füllsack & Fabian Veider & Georg Jäger, 2024. "Patterns of stability in complex contagions," Journal of Computational Social Science, Springer, vol. 7(2), pages 1895-1911, October.
    15. Vera-Ávila, V.P. & Rivera-Durón, R.R. & Soriano-Garcia, Miguel S. & Sevilla-Escoboza, R. & Buldú, Javier M., 2024. "Electronic implementation of simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    16. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    17. Guilherme Ferraz de Arruda & Giovanni Petri & Pablo Martin Rodriguez & Yamir Moreno, 2023. "Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    19. Keliger, Dániel & Horváth, Illés, 2023. "Accuracy criterion for mean field approximations of Markov processes on hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    20. Jennifer K Costanza & John W Coulston & David N Wear, 2017. "An empirical, hierarchical typology of tree species assemblages for assessing forest dynamics under global change scenarios," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123008129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.