IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0091536.html
   My bibliography  Save this article

Spatial Climate Patterns Explain Negligible Variation in Strength of Compensatory Density Feedbacks in Birds and Mammals

Author

Listed:
  • Salvador Herrando-Pérez
  • Steven Delean
  • Barry W Brook
  • Phillip Cassey
  • Corey J A Bradshaw

Abstract

The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained

Suggested Citation

  • Salvador Herrando-Pérez & Steven Delean & Barry W Brook & Phillip Cassey & Corey J A Bradshaw, 2014. "Spatial Climate Patterns Explain Negligible Variation in Strength of Compensatory Density Feedbacks in Birds and Mammals," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.
  • Handle: RePEc:plo:pone00:0091536
    DOI: 10.1371/journal.pone.0091536
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0091536
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0091536&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0091536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olaf R. P. Bininda-Emonds & Marcel Cardillo & Kate E. Jones & Ross D. E. MacPhee & Robin M. D. Beck & Richard Grenyer & Samantha A. Price & Rutger A. Vos & John L. Gittleman & Andy Purvis, 2007. "The delayed rise of present-day mammals," Nature, Nature, vol. 446(7135), pages 507-512, March.
    2. Doncaster, C. Patrick, 2008. "Non-linear density dependence in time series is not evidence of non-logistic growth," Theoretical Population Biology, Elsevier, vol. 73(4), pages 483-489.
    3. T. B. Hallett & T. Coulson & J. G. Pilkington & T. H. Clutton-Brock & J. M. Pemberton & B. T. Grenfell, 2004. "Why large-scale climate indices seem to predict ecological processes better than local weather," Nature, Nature, vol. 430(6995), pages 71-75, July.
    4. W. Jetz & G. H. Thomas & J. B. Joy & K. Hartmann & A. O. Mooers, 2012. "The global diversity of birds in space and time," Nature, Nature, vol. 491(7424), pages 444-448, November.
    5. Bernt-Erik Sæther & Russell Lande & Steinar Engen & Henri Weimerskirch & Magnar Lillegård & Res Altwegg & Peter H. Becker & Thomas Bregnballe & Jon E. Brommer & Robin H. McCleery & Juha Merilä & Erik , 2005. "Generation time and temporal scaling of bird population dynamics," Nature, Nature, vol. 436(7047), pages 99-102, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aris Katzourakis & Gkikas Magiorkinis & Aaron G Lim & Sunetra Gupta & Robert Belshaw & Robert Gifford, 2014. "Larger Mammalian Body Size Leads to Lower Retroviral Activity," PLOS Pathogens, Public Library of Science, vol. 10(7), pages 1-11, July.
    2. Joshua J Medina & James M Maley & Siddharth Sannapareddy & Noah N Medina & Cyril M Gilman & John E McCormack, 2020. "A rapid and cost-effective pipeline for digitization of museum specimens with 3D photogrammetry," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-14, August.
    3. Andrew Brinkworth & Emily Green & Yimeng Li & Jack Oyston & Marcello Ruta & Matthew A. Wills, 2023. "Bird clades with less complex appendicular skeletons tend to have higher species richness," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Wilkinson, Richard D. & Tavaré, Simon, 2009. "Estimating primate divergence times by using conditioned birth-and-death processes," Theoretical Population Biology, Elsevier, vol. 75(4), pages 278-285.
    5. José Hódar & Regino Zamora & Luis Cayuela, 2012. "Climate change and the incidence of a forest pest in Mediterranean ecosystems: can the North Atlantic Oscillation be used as a predictor?," Climatic Change, Springer, vol. 113(3), pages 699-711, August.
    6. Stephen A. Schlebusch & Jakub Rídl & Manon Poignet & Francisco J. Ruiz-Ruano & Jiří Reif & Petr Pajer & Jan Pačes & Tomáš Albrecht & Alexander Suh & Radka Reifová, 2023. "Rapid gene content turnover on the germline-restricted chromosome in songbirds," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Justin W. Baldwin & Joan Garcia-Porta & Carlos A. Botero, 2023. "Complementarity in Allen’s and Bergmann’s rules among birds," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Alexandra McQueen & Marcel Klaassen & Glenn J. Tattersall & Robyn Atkinson & Roz Jessop & Chris J. Hassell & Maureen Christie & Matthew R. E. Symonds, 2022. "Thermal adaptation best explains Bergmann’s and Allen’s Rules across ecologically diverse shorebirds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Jonathan P Tennant & Norman MacLeod, 2014. "Snout Shape in Extant Ruminants," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-13, November.
    10. Xiaodan Wang & Marius Somveille & Adriaan M. Dokter & Wenhua Cao & Chuyu Cheng & Jiajia Liu & Zhijun Ma, 2024. "Macro-scale relationship between body mass and timing of bird migration," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Elspeth Kenny & Tim R. Birkhead & Jonathan P. Green, 2017. "Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(4), pages 1142-1148.
    12. Peter Mikula & Oldřich Tomášek & Dušan Romportl & Timothy K. Aikins & Jorge E. Avendaño & Bukola D. A. Braimoh-Azaki & Adams Chaskda & Will Cresswell & Susan J. Cunningham & Svein Dale & Gabriela R. F, 2023. "Bird tolerance to humans in open tropical ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Shan Su & Phillip Cassey & Miquel Vall-llosera & Tim M Blackburn, 2015. "Going Cheap: Determinants of Bird Price in the Taiwanese Pet Market," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
    14. Rubén Moreno-Opo & Mariana Fernández-Olalla & Antoni Margalida & Ángel Arredondo & Francisco Guil, 2012. "Effect of Methodological and Ecological Approaches on Heterogeneity of Nest-Site Selection of a Long-Lived Vulture," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-9, March.
    15. John M. Humphreys, 2022. "Amplification in Time and Dilution in Space: Partitioning Spatiotemporal Processes to Assess the Role of Avian-Host Phylodiversity in Shaping Eastern Equine Encephalitis Virus Distribution," Geographies, MDPI, vol. 2(3), pages 1-16, July.
    16. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    17. Ezard, Thomas H.G. & Coulson, Tim, 2010. "How sensitive are elasticities of long-run stochastic growth to how environmental variability is modelled?," Ecological Modelling, Elsevier, vol. 221(2), pages 191-200.
    18. Leanna N. DeJong & Samuel D. Cowell & Thuy Nhi N. Nguyen & Darren S. Proppe, 2015. "Attracting songbirds with conspecific playback: a community approach," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(5), pages 1379-1388.
    19. Andrea Santangeli & Benjamin Weigel & Laura H. Antão & Elina Kaarlejärvi & Maria Hällfors & Aleksi Lehikoinen & Andreas Lindén & Maija Salemaa & Tiina Tonteri & Päivi Merilä & Kristiina Vuorio & Otso , 2023. "Mixed effects of a national protected area network on terrestrial and freshwater biodiversity," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Michael Pittman & Phil R. Bell & Case Vincent Miller & Nathan J. Enriquez & Xiaoli Wang & Xiaoting Zheng & Leah R. Tsang & Yuen Ting Tse & Michael Landes & Thomas G. Kaye, 2022. "Exceptional preservation and foot structure reveal ecological transitions and lifestyles of early theropod flyers," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0091536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.