IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40308-8.html
   My bibliography  Save this article

Rapid gene content turnover on the germline-restricted chromosome in songbirds

Author

Listed:
  • Stephen A. Schlebusch

    (Charles University)

  • Jakub Rídl

    (Charles University
    Czech Academy of Sciences)

  • Manon Poignet

    (Charles University)

  • Francisco J. Ruiz-Ruano

    (University of East Anglia
    Uppsala University
    University of Bonn
    Leibniz Institute for the Analysis of Biodiversity Change)

  • Jiří Reif

    (Charles University
    Palacky University)

  • Petr Pajer

    (Military Medical Agency, Tychonova 1)

  • Jan Pačes

    (Czech Academy of Sciences)

  • Tomáš Albrecht

    (Charles University
    Czech Academy of Sciences)

  • Alexander Suh

    (University of East Anglia
    Uppsala University
    Leibniz Institute for the Analysis of Biodiversity Change)

  • Radka Reifová

    (Charles University)

Abstract

The germline-restricted chromosome (GRC) of songbirds represents a taxonomically widespread example of programmed DNA elimination. Despite its apparent indispensability, we still know very little about the GRC’s genetic composition, function, and evolutionary significance. Here we assemble the GRC in two closely related species, the common and thrush nightingale. In total we identify 192 genes across the two GRCs, with many of them present in multiple copies. Interestingly, the GRC appears to be under little selective pressure, with the genetic content differing dramatically between the two species and many GRC genes appearing to be pseudogenized fragments. Only one gene, cpeb1, has a complete coding region in all examined individuals of the two species and shows no copy number variation. The acquisition of this gene by the GRC corresponds with the earliest estimates of the GRC origin, making it a good candidate for the functional indispensability of the GRC in songbirds.

Suggested Citation

  • Stephen A. Schlebusch & Jakub Rídl & Manon Poignet & Francisco J. Ruiz-Ruano & Jiří Reif & Petr Pajer & Jan Pačes & Tomáš Albrecht & Alexander Suh & Radka Reifová, 2023. "Rapid gene content turnover on the germline-restricted chromosome in songbirds," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40308-8
    DOI: 10.1038/s41467-023-40308-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40308-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40308-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. W. Jetz & G. H. Thomas & J. B. Joy & K. Hartmann & A. O. Mooers, 2012. "The global diversity of birds in space and time," Nature, Nature, vol. 491(7424), pages 444-448, November.
    2. Cormac M. Kinsella & Francisco J. Ruiz-Ruano & Anne-Marie Dion-Côté & Alexander J. Charles & Toni I. Gossmann & Josefa Cabrero & Dennis Kappei & Nicola Hemmings & Mirre J. P. Simons & Juan Pedro M. Ca, 2019. "Programmed DNA elimination of germline development genes in songbirds," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua J Medina & James M Maley & Siddharth Sannapareddy & Noah N Medina & Cyril M Gilman & John E McCormack, 2020. "A rapid and cost-effective pipeline for digitization of museum specimens with 3D photogrammetry," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-14, August.
    2. Andrew Brinkworth & Emily Green & Yimeng Li & Jack Oyston & Marcello Ruta & Matthew A. Wills, 2023. "Bird clades with less complex appendicular skeletons tend to have higher species richness," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Justin W. Baldwin & Joan Garcia-Porta & Carlos A. Botero, 2023. "Complementarity in Allen’s and Bergmann’s rules among birds," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Alexandra McQueen & Marcel Klaassen & Glenn J. Tattersall & Robyn Atkinson & Roz Jessop & Chris J. Hassell & Maureen Christie & Matthew R. E. Symonds, 2022. "Thermal adaptation best explains Bergmann’s and Allen’s Rules across ecologically diverse shorebirds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Xiaodan Wang & Marius Somveille & Adriaan M. Dokter & Wenhua Cao & Chuyu Cheng & Jiajia Liu & Zhijun Ma, 2024. "Macro-scale relationship between body mass and timing of bird migration," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Elspeth Kenny & Tim R. Birkhead & Jonathan P. Green, 2017. "Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(4), pages 1142-1148.
    7. Peter Mikula & Oldřich Tomášek & Dušan Romportl & Timothy K. Aikins & Jorge E. Avendaño & Bukola D. A. Braimoh-Azaki & Adams Chaskda & Will Cresswell & Susan J. Cunningham & Svein Dale & Gabriela R. F, 2023. "Bird tolerance to humans in open tropical ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Shan Su & Phillip Cassey & Miquel Vall-llosera & Tim M Blackburn, 2015. "Going Cheap: Determinants of Bird Price in the Taiwanese Pet Market," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
    9. John M. Humphreys, 2022. "Amplification in Time and Dilution in Space: Partitioning Spatiotemporal Processes to Assess the Role of Avian-Host Phylodiversity in Shaping Eastern Equine Encephalitis Virus Distribution," Geographies, MDPI, vol. 2(3), pages 1-16, July.
    10. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    11. Leanna N. DeJong & Samuel D. Cowell & Thuy Nhi N. Nguyen & Darren S. Proppe, 2015. "Attracting songbirds with conspecific playback: a community approach," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(5), pages 1379-1388.
    12. Andrea Santangeli & Benjamin Weigel & Laura H. Antão & Elina Kaarlejärvi & Maria Hällfors & Aleksi Lehikoinen & Andreas Lindén & Maija Salemaa & Tiina Tonteri & Päivi Merilä & Kristiina Vuorio & Otso , 2023. "Mixed effects of a national protected area network on terrestrial and freshwater biodiversity," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Michael Pittman & Phil R. Bell & Case Vincent Miller & Nathan J. Enriquez & Xiaoli Wang & Xiaoting Zheng & Leah R. Tsang & Yuen Ting Tse & Michael Landes & Thomas G. Kaye, 2022. "Exceptional preservation and foot structure reveal ecological transitions and lifestyles of early theropod flyers," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Kimberley J. Mathot & Josue David Arteaga-Torres & Anne Besson & Deborah M. Hawkshaw & Natasha Klappstein & Rebekah A. McKinnon & Sheeraja Sridharan & Shinichi Nakagawa, 2024. "A systematic review and meta-analysis of unimodal and multimodal predation risk assessment in birds," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Jonathan A. Rader & Tyson L. Hedrick, 2023. "Morphological evolution of bird wings follows a mechanical sensitivity gradient determined by the aerodynamics of flapping flight," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Muhammad Nawaz Rajpar & Shahab Ali Khan & Allah Ditta & Hayssam M. Ali & Sami Ullah & Muhammad Ibrahim & Altaf Hussain Rajpar & Mohamed Zakaria & Mohamed Z. M. Salem, 2021. "Subtropical Broad-Leaved Urban Forests as the Foremost Dynamic and Complex Habitats for a Wide Range of Bird Species," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    17. Maxime Policarpo & Maude W. Baldwin & Didier Casane & Walter Salzburger, 2024. "Diversity and evolution of the vertebrate chemoreceptor gene repertoire," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Diogo S M Samia & Daniel T Blumstein, 2014. "Phi Index: A New Metric to Test the Flush Early and Avoid the Rush Hypothesis," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-13, November.
    19. Isaac Eckert & Andrea Brown & Dominique Caron & Federico Riva & Laura J. Pollock, 2023. "30×30 biodiversity gains rely on national coordination," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Andrew F Magee & Sebastian Höhna & Tetyana I Vasylyeva & Adam D Leaché & Vladimir N Minin, 2020. "Locally adaptive Bayesian birth-death model successfully detects slow and rapid rate shifts," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-23, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40308-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.