IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0085048.html
   My bibliography  Save this article

The Impact of Mathematical Proficiency on the Number-Space Association

Author

Listed:
  • Danielle Hoffmann
  • Christophe Mussolin
  • Romain Martin
  • Christine Schiltz

Abstract

A specific instance of the association between numerical and spatial representations is the SNARC (Spatial Numerical Association of Response Codes) effect. The SNARC effect describes the finding that during binary classification of numbers participants are faster to respond to small/large numbers with the left/right hand respectively. Even though it has been frequently replicated, important inter-individual variability has also been reported. Mathematical proficiency is an obvious candidate source for inter-individual variability in numerical judgments, but studies investigating its influence on the SNARC effect remain scarce. The present experiment included a total of 95 University students, divided into three groups differing significantly in their mathematical proficiency levels. Using group analyses, it appeared that the three groups differed significantly in the strength of their number-space associations in a parity judgment task. This result was further confirmed on an individual level, with higher levels in arithmetic leading to relatively weaker SNARC effects. To explain this negative relationship we propose accounts based on differences in access to qualitatively different numerical representations and also consider more domain general factors, with a focus on inhibition capacities.

Suggested Citation

  • Danielle Hoffmann & Christophe Mussolin & Romain Martin & Christine Schiltz, 2014. "The Impact of Mathematical Proficiency on the Number-Space Association," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
  • Handle: RePEc:plo:pone00:0085048
    DOI: 10.1371/journal.pone.0085048
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085048
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0085048&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0085048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julie Castronovo & Silke M Göbel, 2012. "Impact of High Mathematics Education on the Number Sense," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-16, April.
    2. Ping Ren & Michael E R Nicholls & Yuan-ye Ma & Lin Chen, 2011. "Size Matters: Non-Numerical Magnitude Affects the Spatial Coding of Response," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-6, August.
    3. Michèle M M Mazzocco & Lisa Feigenson & Justin Halberda, 2011. "Preschoolers' Precision of the Approximate Number System Predicts Later School Mathematics Performance," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fiona Nemeh & Judi Humberstone & Mark J Yates & Robert A Reeve, 2018. "Non-symbolic magnitudes are represented spatially: Evidence from a non-symbolic SNARC task," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-15, August.
    2. Arnaud Viarouge & Edward M Hubbard & Bruce D McCandliss, 2014. "The Cognitive Mechanisms of the SNARC Effect: An Individual Differences Approach," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmen Brankaer & Pol Ghesquière & Bert De Smedt, 2014. "Children’s Mapping between Non-Symbolic and Symbolic Numerical Magnitudes and Its Association with Timed and Untimed Tests of Mathematics Achievement," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    2. Marie-Claire Cammaerts & Roger Cammaerts, 2021. "Young Ants Already Possess a Mental Number Line," International Journal of Biology, Canadian Center of Science and Education, vol. 12(2), pages 1-1, December.
    3. Jade Eloise Norris & Julie Castronovo, 2016. "Dot Display Affects Approximate Number System Acuity and Relationships with Mathematical Achievement and Inhibitory Control," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    4. Yulia Kuzmina & Tatiana Tikhomirova & Irina Lysenkova & Sergey Malykh, 2020. "Domain-general cognitive functions fully explained growth in nonsymbolic magnitude representation but not in symbolic representation in elementary school children," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-23, February.
    5. Gould, Stephen & Goldsmith, Emily & Lee, Michael, 2020. "The choice polarity effect: An investigation of evolutionary-based trait handedness and perceived magnitudes on laterally displayed choices," Journal of Business Research, Elsevier, vol. 120(C), pages 627-637.
    6. Tristan Roger & Wael Bousselmi & Patrick Roger & Marc Willinger, 2018. "Another law of small numbers: patterns of trading prices in experimental markets," CEE-M Working Papers hal-01954921, CEE-M, Universtiy of Montpellier, CNRS, INRA, Montpellier SupAgro.
    7. Hermann Bulf & Viola Macchi Cassia & Maria Dolores de Hevia, 2014. "Are Numbers, Size and Brightness Equally Efficient in Orienting Visual Attention? Evidence from an Eye-Tracking Study," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-6, June.
    8. Lukowski, Sarah L. & Rosenberg-Lee, Miriam & Thompson, Lee A. & Hart, Sara A. & Willcutt, Erik G. & Olson, Richard K. & Petrill, Stephen A. & Pennington, Bruce F., 2017. "Approximate number sense shares etiological overlap with mathematics and general cognitive ability," Intelligence, Elsevier, vol. 65(C), pages 67-74.
    9. Julie Castronovo & Silke M Göbel, 2012. "Impact of High Mathematics Education on the Number Sense," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-16, April.
    10. Kyungmin Lee & Soohyun Cho, 2019. "Visuo-spatial (but not verbal) executive working memory capacity modulates susceptibility to non-numerical visual magnitudes during numerosity comparison," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    11. Fiona Nemeh & Judi Humberstone & Mark J Yates & Robert A Reeve, 2018. "Non-symbolic magnitudes are represented spatially: Evidence from a non-symbolic SNARC task," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-15, August.
    12. Rasheda Khanam & Son Nghiem, 2016. "Family Income and Child Cognitive and Noncognitive Development in Australia: Does Money Matter?," Demography, Springer;Population Association of America (PAA), vol. 53(3), pages 597-621, June.
    13. Kevin J Holmes & Stella F Lourenco, 2013. "When Numbers Get Heavy: Is the Mental Number Line Exclusively Numerical?," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-5, March.
    14. Sarah A Gray & Robert A Reeve, 2014. "Preschoolers' Dot Enumeration Abilities Are Markers of Their Arithmetic Competence," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    15. Delphine Sasanguie & Bert Reynvoet, 2014. "Adults' Arithmetic Builds on Fast and Automatic Processing of Arabic Digits: Evidence from an Audiovisual Matching Paradigm," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-6, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0085048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.