IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0033832.html
   My bibliography  Save this article

Impact of High Mathematics Education on the Number Sense

Author

Listed:
  • Julie Castronovo
  • Silke M Göbel

Abstract

In adult number processing two mechanisms are commonly used: approximate estimation of quantity and exact calculation. While the former relies on the approximate number sense (ANS) which we share with animals and preverbal infants, the latter has been proposed to rely on an exact number system (ENS) which develops later in life following the acquisition of symbolic number knowledge. The current study investigated the influence of high level math education on the ANS and the ENS. Our results showed that the precision of non-symbolic quantity representation was not significantly altered by high level math education. However, performance in a symbolic number comparison task as well as the ability to map accurately between symbolic and non-symbolic quantities was significantly better the higher mathematics achievement. Our findings suggest that high level math education in adults shows little influence on their ANS, but it seems to be associated with a better anchored ENS and better mapping abilities between ENS and ANS.

Suggested Citation

  • Julie Castronovo & Silke M Göbel, 2012. "Impact of High Mathematics Education on the Number Sense," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-16, April.
  • Handle: RePEc:plo:pone00:0033832
    DOI: 10.1371/journal.pone.0033832
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033832
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0033832&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0033832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Justin Halberda & Michèle M. M. Mazzocco & Lisa Feigenson, 2008. "Individual differences in non-verbal number acuity correlate with maths achievement," Nature, Nature, vol. 455(7213), pages 665-668, October.
    2. Michèle M M Mazzocco & Lisa Feigenson & Justin Halberda, 2011. "Preschoolers' Precision of the Approximate Number System Predicts Later School Mathematics Performance," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulia Kuzmina & Tatiana Tikhomirova & Irina Lysenkova & Sergey Malykh, 2020. "Domain-general cognitive functions fully explained growth in nonsymbolic magnitude representation but not in symbolic representation in elementary school children," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-23, February.
    2. Danielle Hoffmann & Christophe Mussolin & Romain Martin & Christine Schiltz, 2014. "The Impact of Mathematical Proficiency on the Number-Space Association," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    3. Jade Eloise Norris & Julie Castronovo, 2016. "Dot Display Affects Approximate Number System Acuity and Relationships with Mathematical Achievement and Inhibitory Control," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    4. Carmen Brankaer & Pol Ghesquière & Bert De Smedt, 2014. "Children’s Mapping between Non-Symbolic and Symbolic Numerical Magnitudes and Its Association with Timed and Untimed Tests of Mathematics Achievement," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    5. Delphine Sasanguie & Bert Reynvoet, 2014. "Adults' Arithmetic Builds on Fast and Automatic Processing of Arabic Digits: Evidence from an Audiovisual Matching Paradigm," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-6, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmen Brankaer & Pol Ghesquière & Bert De Smedt, 2014. "Children’s Mapping between Non-Symbolic and Symbolic Numerical Magnitudes and Its Association with Timed and Untimed Tests of Mathematics Achievement," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    2. Lukowski, Sarah L. & Rosenberg-Lee, Miriam & Thompson, Lee A. & Hart, Sara A. & Willcutt, Erik G. & Olson, Richard K. & Petrill, Stephen A. & Pennington, Bruce F., 2017. "Approximate number sense shares etiological overlap with mathematics and general cognitive ability," Intelligence, Elsevier, vol. 65(C), pages 67-74.
    3. Kyungmin Lee & Soohyun Cho, 2019. "Visuo-spatial (but not verbal) executive working memory capacity modulates susceptibility to non-numerical visual magnitudes during numerosity comparison," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    4. Marie-Claire Cammaerts & Roger Cammaerts, 2021. "Young Ants Already Possess a Mental Number Line," International Journal of Biology, Canadian Center of Science and Education, vol. 12(2), pages 1-1, December.
    5. Jade Eloise Norris & Julie Castronovo, 2016. "Dot Display Affects Approximate Number System Acuity and Relationships with Mathematical Achievement and Inhibitory Control," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    6. Fabio P. Leite & Roger Ratcliff, 2011. "What cognitive processes drive response biases? A diffusion model analysis," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 6(7), pages 651-687, October.
    7. Liat Goldfarb & Sharon Levy, 2013. "Counting within the Subitizing Range: The Effect of Number of Distractors on the Perception of Subset Items," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    8. Michèle M M Mazzocco & Lisa Feigenson & Justin Halberda, 2011. "Preschoolers' Precision of the Approximate Number System Predicts Later School Mathematics Performance," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    9. repec:cup:judgdm:v:6:y:2011:i:7:p:651-687 is not listed on IDEAS
    10. repec:cup:judgdm:v:8:y:2013:i:3:p:330-344 is not listed on IDEAS
    11. Yulia Kuzmina & Tatiana Tikhomirova & Irina Lysenkova & Sergey Malykh, 2020. "Domain-general cognitive functions fully explained growth in nonsymbolic magnitude representation but not in symbolic representation in elementary school children," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-23, February.
    12. Riccardo Williams & Silvia Andreassi & Marta Moselli & Fiorella Fantini & Annalisa Tanzilli & Vittorio Lingiardi & Fiorenzo Laghi, 2023. "Relationship between Executive Functions, Social Cognition, and Attachment State of Mind in Adolescence: An Explorative Study," IJERPH, MDPI, vol. 20(4), pages 1-14, February.
    13. Roger, Tristan & Roger, Patrick & Willinger, Marc, 2022. "Number sense, trading decisions and mispricing: An experiment," Journal of Economic Dynamics and Control, Elsevier, vol. 135(C).
    14. Ye, Jun & Zhou, Kun & Chen, Rui, 2021. "Numerical or verbal Information: The effect of comparative information in social comparison on prosocial behavior," Journal of Business Research, Elsevier, vol. 124(C), pages 198-211.
    15. Tristan Roger & Wael Bousselmi & Patrick Roger & Marc Willinger, 2018. "Another law of small numbers: patterns of trading prices in experimental markets," CEE-M Working Papers hal-01954921, CEE-M, Universtiy of Montpellier, CNRS, INRA, Montpellier SupAgro.
    16. Luke F. Rinne & Michele M. M. Mazzocco, 2013. "Inferring uncertainty from interval estimates: Effects of alpha level and numeracy," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 8(3), pages 330-344, May.
    17. Danielle Hoffmann & Christophe Mussolin & Romain Martin & Christine Schiltz, 2014. "The Impact of Mathematical Proficiency on the Number-Space Association," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    18. Rasheda Khanam & Son Nghiem, 2016. "Family Income and Child Cognitive and Noncognitive Development in Australia: Does Money Matter?," Demography, Springer;Population Association of America (PAA), vol. 53(3), pages 597-621, June.
    19. Sarah A Gray & Robert A Reeve, 2014. "Preschoolers' Dot Enumeration Abilities Are Markers of Their Arithmetic Competence," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    20. Fang, Shijia & Zhou, Xinlin, 2022. "Form perception speed is critical for the relationship between non-verbal number sense and arithmetic fluency," Intelligence, Elsevier, vol. 95(C).
    21. Anna A Matejko & Daniel Ansari, 2016. "Trajectories of Symbolic and Nonsymbolic Magnitude Processing in the First Year of Formal Schooling," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
    22. Tamara M J Schleepen & Hanneke I Van Mier & Bert De Smedt, 2016. "The Contribution of Numerical Magnitude Comparison and Phonological Processing to Individual Differences in Fourth Graders’ Multiplication Fact Ability," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-20, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0033832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.