IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0036317.html
   My bibliography  Save this article

A Multi-Label Predictor for Identifying the Subcellular Locations of Singleplex and Multiplex Eukaryotic Proteins

Author

Listed:
  • Xiao Wang
  • Guo-Zheng Li

Abstract

Subcellular locations of proteins are important functional attributes. An effective and efficient subcellular localization predictor is necessary for rapidly and reliably annotating subcellular locations of proteins. Most of existing subcellular localization methods are only used to deal with single-location proteins. Actually, proteins may simultaneously exist at, or move between, two or more different subcellular locations. To better reflect characteristics of multiplex proteins, it is highly desired to develop new methods for dealing with them. In this paper, a new predictor, called Euk-ECC-mPLoc, by introducing a powerful multi-label learning approach which exploits correlations between subcellular locations and hybridizing gene ontology with dipeptide composition information, has been developed that can be used to deal with systems containing both singleplex and multiplex eukaryotic proteins. It can be utilized to identify eukaryotic proteins among the following 22 locations: (1) acrosome, (2) cell membrane, (3) cell wall, (4) centrosome, (5) chloroplast, (6) cyanelle, (7) cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10) endosome, (11) extracellular, (12) Golgi apparatus, (13) hydrogenosome, (14) lysosome, (15) melanosome, (16) microsome, (17) mitochondrion, (18) nucleus, (19) peroxisome, (20) spindle pole body, (21) synapse, and (22) vacuole. Experimental results on a stringent benchmark dataset of eukaryotic proteins by jackknife cross validation test show that the average success rate and overall success rate obtained by Euk-ECC-mPLoc were 69.70% and 81.54%, respectively, indicating that our approach is quite promising. Particularly, the success rates achieved by Euk-ECC-mPLoc for small subsets were remarkably improved, indicating that it holds a high potential for simulating the development of the area. As a user-friendly web-server, Euk-ECC-mPLoc is freely accessible to the public at the website http://levis.tongji.edu.cn:8080/bioinfo/Euk-ECC-mPLoc/. We believe that Euk-ECC-mPLoc may become a useful high-throughput tool, or at least play a complementary role to the existing predictors in identifying subcellular locations of eukaryotic proteins.

Suggested Citation

  • Xiao Wang & Guo-Zheng Li, 2012. "A Multi-Label Predictor for Identifying the Subcellular Locations of Singleplex and Multiplex Eukaryotic Proteins," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
  • Handle: RePEc:plo:pone00:0036317
    DOI: 10.1371/journal.pone.0036317
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036317
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0036317&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0036317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pu Wang & Xuan Xiao & Kuo-Chen Chou, 2011. "NR-2L: A Two-Level Predictor for Identifying Nuclear Receptor Subfamilies Based on Sequence-Derived Features," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    2. Wei-Zhong Lin & Jian-An Fang & Xuan Xiao & Kuo-Chen Chou, 2011. "iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-7, September.
    3. Xuan Xiao & Zhi-Cheng Wu & Kuo-Chen Chou, 2011. "A Multi-Label Classifier for Predicting the Subcellular Localization of Gram-Negative Bacterial Proteins with Both Single and Multiple Sites," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-10, June.
    4. Kuo-Chen Chou & Hong-Bin Shen, 2010. "Plant-mPLoc: A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shibiao Wan & Man-Wai Mak & Sun-Yuan Kung, 2014. "HybridGO-Loc: Mining Hybrid Features on Gene Ontology for Predicting Subcellular Localization of Multi-Location Proteins," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.
    2. Huazhen Wang & Xin Liu & Bing Lv & Fan Yang & Yanzhu Hong, 2014. "Reliable Multi-Label Learning via Conformal Predictor and Random Forest for Syndrome Differentiation of Chronic Fatigue in Traditional Chinese Medicine," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi-Qing Li & Le-Le Hu & Lei Chen & Kai-Yan Feng & Yu-Dong Cai & Kuo-Chen Chou, 2012. "Prediction of Protein Domain with mRMR Feature Selection and Analysis," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    2. Wu Zhu & Jian-an Fang & Yang Tang & Wenbing Zhang & Wei Du, 2012. "Digital IIR Filters Design Using Differential Evolution Algorithm with a Controllable Probabilistic Population Size," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    3. Le-Le Hu & Tao Huang & Yu-Dong Cai & Kuo-Chen Chou, 2011. "Prediction of Body Fluids where Proteins are Secreted into Based on Protein Interaction Network," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-8, July.
    4. Wenzheng Bao & Bin Yang & Rong Bao & Yuehui Chen, 2019. "LipoFNT: Lipoylation Sites Identification with Flexible Neural Tree," Complexity, Hindawi, vol. 2019, pages 1-9, July.
    5. Sabit Ahmed & Afrida Rahman & Md Al Mehedi Hasan & Md Khaled Ben Islam & Julia Rahman & Shamim Ahmad, 2021. "predPhogly-Site: Predicting phosphoglycerylation sites by incorporating probabilistic sequence-coupling information into PseAAC and addressing data imbalance," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-17, April.
    6. Lili Liu & Zijun Zhang & Qian Mei & Ming Chen, 2013. "PSI: A Comprehensive and Integrative Approach for Accurate Plant Subcellular Localization Prediction," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
    7. Yan Xu & Jun Ding & Ling-Yun Wu & Kuo-Chen Chou, 2013. "iSNO-PseAAC: Predict Cysteine S-Nitrosylation Sites in Proteins by Incorporating Position Specific Amino Acid Propensity into Pseudo Amino Acid Composition," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    8. Xin Ma & Jing Guo & Xiao Sun, 2016. "DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-20, December.
    9. Jianjun He & Hong Gu & Wenqi Liu, 2012. "Imbalanced Multi-Modal Multi-Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-10, June.
    10. Xuan Xiao & Zhi-Cheng Wu & Kuo-Chen Chou, 2011. "A Multi-Label Classifier for Predicting the Subcellular Localization of Gram-Negative Bacterial Proteins with Both Single and Multiple Sites," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-10, June.
    11. Yan Tong & Hui Huang & YuHua Wang, 2021. "Genome-Wide Analysis of the Trihelix Gene Family and Their Response to Cold Stress in Dendrobium officinale," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    12. Bin Liu & Longyun Fang & Fule Liu & Xiaolong Wang & Junjie Chen & Kuo-Chen Chou, 2015. "Identification of Real MicroRNA Precursors with a Pseudo Structure Status Composition Approach," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-20, March.
    13. Tao Huang & Lei Chen & Yu-Dong Cai & Kuo-Chen Chou, 2011. "Classification and Analysis of Regulatory Pathways Using Graph Property, Biochemical and Physicochemical Property, and Functional Property," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
    14. Junzhe Cao & Wenqi Liu & Jianjun He & Hong Gu, 2013. "Mining Proteins with Non-Experimental Annotations Based on an Active Sample Selection Strategy for Predicting Protein Subcellular Localization," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-9, June.
    15. Shibiao Wan & Man-Wai Mak & Sun-Yuan Kung, 2014. "HybridGO-Loc: Mining Hybrid Features on Gene Ontology for Predicting Subcellular Localization of Multi-Location Proteins," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0036317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.