IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0040549.html
   My bibliography  Save this article

Digital IIR Filters Design Using Differential Evolution Algorithm with a Controllable Probabilistic Population Size

Author

Listed:
  • Wu Zhu
  • Jian-an Fang
  • Yang Tang
  • Wenbing Zhang
  • Wei Du

Abstract

Design of a digital infinite-impulse-response (IIR) filter is the process of synthesizing and implementing a recursive filter network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE) is proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controllable probabilistic (CPDE) population size. It considers the convergence speed and the computational cost simultaneously by nonperiodic partial increasing or declining individuals according to fitness diversities. In addition, we discuss as well some important aspects for IIR filter design, such as the cost function value, the influence of (noise) perturbations, the convergence rate and successful percentage, the parameter measurement, etc. As to the simulation result, it shows that the presented algorithm is viable and comparable. Compared with six existing State-of-the-Art algorithms-based digital IIR filter design methods obtained by numerical experiments, CPDE is relatively more promising and competitive.

Suggested Citation

  • Wu Zhu & Jian-an Fang & Yang Tang & Wenbing Zhang & Wei Du, 2012. "Digital IIR Filters Design Using Differential Evolution Algorithm with a Controllable Probabilistic Population Size," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
  • Handle: RePEc:plo:pone00:0040549
    DOI: 10.1371/journal.pone.0040549
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040549
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0040549&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0040549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zheng Li & Joseph E O'Doherty & Timothy L Hanson & Mikhail A Lebedev & Craig S Henriquez & Miguel A L Nicolelis, 2009. "Unscented Kalman Filter for Brain-Machine Interfaces," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-18, July.
    2. Xuan Xiao & Pu Wang & Kuo-Chen Chou, 2012. "iNR-PhysChem: A Sequence-Based Predictor for Identifying Nuclear Receptors and Their Subfamilies via Physical-Chemical Property Matrix," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-9, February.
    3. du Plessis, Mathys C. & Engelbrecht, Andries P., 2012. "Using Competitive Population Evaluation in a differential evolution algorithm for dynamic environments," European Journal of Operational Research, Elsevier, vol. 218(1), pages 7-20.
    4. Wei-Zhong Lin & Jian-An Fang & Xuan Xiao & Kuo-Chen Chou, 2011. "iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-7, September.
    5. Jianbo Gao & Jing Hu & Wen-wen Tung, 2011. "Facilitating Joint Chaos and Fractal Analysis of Biosignals through Nonlinear Adaptive Filtering," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    6. Dongchuan Yu & Ulrich Parlitz, 2011. "Inferring Network Connectivity by Delayed Feedback Control," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-12, September.
    7. Sebastián P Luque & Roland Fried, 2011. "Recursive Filtering for Zero Offset Correction of Diving Depth Time Series with GNU R Package diveMove," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-9, January.
    8. Sinisa Pajevic & Dietmar Plenz, 2009. "Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-20, January.
    9. Pu Wang & Xuan Xiao & Kuo-Chen Chou, 2011. "NR-2L: A Two-Level Predictor for Identifying Nuclear Receptor Subfamilies Based on Sequence-Derived Features," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    10. Xuan Xiao & Zhi-Cheng Wu & Kuo-Chen Chou, 2011. "A Multi-Label Classifier for Predicting the Subcellular Localization of Gram-Negative Bacterial Proteins with Both Single and Multiple Sites," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-10, June.
    11. Michele Tumminello & Fabrizio Lillo & Rosario Nunzio Mantegna, 2007. "Kullback-Leibler distance as a measure of the information filtered from multivariate data," Papers 0706.0168, arXiv.org.
    12. Garcia-Martinez, C. & Lozano, M. & Herrera, F. & Molina, D. & Sanchez, A.M., 2008. "Global and local real-coded genetic algorithms based on parent-centric crossover operators," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1088-1113, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulong Xu & Jian-an Fang & Wu Zhu & Xiaopeng Wang & Lingdong Zhao, 2015. "Differential evolution using a superior–inferior crossover scheme," Computational Optimization and Applications, Springer, vol. 61(1), pages 243-274, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi-Qing Li & Le-Le Hu & Lei Chen & Kai-Yan Feng & Yu-Dong Cai & Kuo-Chen Chou, 2012. "Prediction of Protein Domain with mRMR Feature Selection and Analysis," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    2. Xiao Wang & Guo-Zheng Li, 2012. "A Multi-Label Predictor for Identifying the Subcellular Locations of Singleplex and Multiplex Eukaryotic Proteins," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    3. Yan Xu & Jun Ding & Ling-Yun Wu & Kuo-Chen Chou, 2013. "iSNO-PseAAC: Predict Cysteine S-Nitrosylation Sites in Proteins by Incorporating Position Specific Amino Acid Propensity into Pseudo Amino Acid Composition," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    4. Williams-García, Rashid V. & Nicolis, Stam, 2022. "Route to chaos in a branching model of neural network dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    5. Pandey, Pradumn Kumar & Badarla, Venkataramana, 2018. "Reconstruction of network topology using status-time-series data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 573-583.
    6. Mihailović, Dragutin T. & Nikolić-Đorić, Emilija & Arsenić, Ilija & Malinović-Milićević, Slavica & Singh, Vijay P. & Stošić, Tatijana & Stošić, Borko, 2019. "Analysis of daily streamflow complexity by Kolmogorov measures and Lyapunov exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 290-303.
    7. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    8. Wenzheng Bao & Bin Yang & Rong Bao & Yuehui Chen, 2019. "LipoFNT: Lipoylation Sites Identification with Flexible Neural Tree," Complexity, Hindawi, vol. 2019, pages 1-9, July.
    9. Sabit Ahmed & Afrida Rahman & Md Al Mehedi Hasan & Md Khaled Ben Islam & Julia Rahman & Shamim Ahmad, 2021. "predPhogly-Site: Predicting phosphoglycerylation sites by incorporating probabilistic sequence-coupling information into PseAAC and addressing data imbalance," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-17, April.
    10. Zhang, Xin & Podobnik, Boris & Kenett, Dror Y. & Eugene Stanley, H., 2014. "Systemic risk and causality dynamics of the world international shipping market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 43-53.
    11. Musmeci, Nicoló & Aste, Tomaso & Di Matteo, T., 2015. "Relation between financial market structure and the real economy: comparison between clustering methods," LSE Research Online Documents on Economics 61644, London School of Economics and Political Science, LSE Library.
    12. Jovanovic, Franck & Mantegna, Rosario N. & Schinckus, Christophe, 2019. "When financial economics influences physics: The role of Econophysics," International Review of Financial Analysis, Elsevier, vol. 65(C).
    13. Andrey Eliseyev & Tetiana Aksenova, 2016. "Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    14. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    15. Xin Ma & Jing Guo & Xiao Sun, 2016. "DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-20, December.
    16. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    17. Mikail Rubinov & Olaf Sporns & Jean-Philippe Thivierge & Michael Breakspear, 2011. "Neurobiologically Realistic Determinants of Self-Organized Criticality in Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-14, June.
    18. Marietta Kirchner & Patric Schubert & Magnus Liebherr & Christian T Haas, 2014. "Detrended Fluctuation Analysis and Adaptive Fractal Analysis of Stride Time Data in Parkinson's Disease: Stitching Together Short Gait Trials," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-6, January.
    19. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    20. He, Hong-di & Wang, Jun-li & Wei, Hai-rui & Ye, Cheng & Ding, Yi, 2016. "Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 518-525.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0040549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.