IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0022989.html
   My bibliography  Save this article

Prediction of Body Fluids where Proteins are Secreted into Based on Protein Interaction Network

Author

Listed:
  • Le-Le Hu
  • Tao Huang
  • Yu-Dong Cai
  • Kuo-Chen Chou

Abstract

Determining the body fluids where secreted proteins can be secreted into is important for protein function annotation and disease biomarker discovery. In this study, we developed a network-based method to predict which kind of body fluids human proteins can be secreted into. For a newly constructed benchmark dataset that consists of 529 human-secreted proteins, the prediction accuracy for the most possible body fluid location predicted by our method via the jackknife test was 79.02%, significantly higher than the success rate by a random guess (29.36%). The likelihood that the predicted body fluids of the first four orders contain all the true body fluids where the proteins can be secreted into is 62.94%. Our method was further demonstrated with two independent datasets: one contains 57 proteins that can be secreted into blood; while the other contains 61 proteins that can be secreted into plasma/serum and were possible biomarkers associated with various cancers. For the 57 proteins in first dataset, 55 were correctly predicted as blood-secrete proteins. For the 61 proteins in the second dataset, 58 were predicted to be most possible in plasma/serum. These encouraging results indicate that the network-based prediction method is quite promising. It is anticipated that the method will benefit the relevant areas for both basic research and drug development.

Suggested Citation

  • Le-Le Hu & Tao Huang & Yu-Dong Cai & Kuo-Chen Chou, 2011. "Prediction of Body Fluids where Proteins are Secreted into Based on Protein Interaction Network," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-8, July.
  • Handle: RePEc:plo:pone00:0022989
    DOI: 10.1371/journal.pone.0022989
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022989
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0022989&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0022989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xuan Xiao & Zhi-Cheng Wu & Kuo-Chen Chou, 2011. "A Multi-Label Classifier for Predicting the Subcellular Localization of Gram-Negative Bacterial Proteins with Both Single and Multiple Sites," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-10, June.
    2. Kuo-Chen Chou & Hong-Bin Shen, 2010. "Plant-mPLoc: A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai He & Yan Wang & Xuping Xie & Dan Shao, 2022. "MultiSec: Multi-Task Deep Learning Improves Secreted Protein Discovery in Human Body Fluids," Mathematics, MDPI, vol. 10(15), pages 1-17, July.
    2. Jianjun He & Hong Gu & Wenqi Liu, 2012. "Imbalanced Multi-Modal Multi-Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-10, June.
    3. Yu-Fei Gao & Lei Chen & Yu-Dong Cai & Kai-Yan Feng & Tao Huang & Yang Jiang, 2012. "Predicting Metabolic Pathways of Small Molecules and Enzymes Based on Interaction Information of Chemicals and Proteins," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi-Qing Li & Le-Le Hu & Lei Chen & Kai-Yan Feng & Yu-Dong Cai & Kuo-Chen Chou, 2012. "Prediction of Protein Domain with mRMR Feature Selection and Analysis," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    2. Xiao Wang & Guo-Zheng Li, 2012. "A Multi-Label Predictor for Identifying the Subcellular Locations of Singleplex and Multiplex Eukaryotic Proteins," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    3. Lili Liu & Zijun Zhang & Qian Mei & Ming Chen, 2013. "PSI: A Comprehensive and Integrative Approach for Accurate Plant Subcellular Localization Prediction," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
    4. Wu Zhu & Jian-an Fang & Yang Tang & Wenbing Zhang & Wei Du, 2012. "Digital IIR Filters Design Using Differential Evolution Algorithm with a Controllable Probabilistic Population Size," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    5. Xuan Xiao & Zhi-Cheng Wu & Kuo-Chen Chou, 2011. "A Multi-Label Classifier for Predicting the Subcellular Localization of Gram-Negative Bacterial Proteins with Both Single and Multiple Sites," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-10, June.
    6. Yan Tong & Hui Huang & YuHua Wang, 2021. "Genome-Wide Analysis of the Trihelix Gene Family and Their Response to Cold Stress in Dendrobium officinale," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    7. Tao Huang & Lei Chen & Yu-Dong Cai & Kuo-Chen Chou, 2011. "Classification and Analysis of Regulatory Pathways Using Graph Property, Biochemical and Physicochemical Property, and Functional Property," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
    8. Junzhe Cao & Wenqi Liu & Jianjun He & Hong Gu, 2013. "Mining Proteins with Non-Experimental Annotations Based on an Active Sample Selection Strategy for Predicting Protein Subcellular Localization," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-9, June.
    9. Shibiao Wan & Man-Wai Mak & Sun-Yuan Kung, 2014. "HybridGO-Loc: Mining Hybrid Features on Gene Ontology for Predicting Subcellular Localization of Multi-Location Proteins," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0022989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.