IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0249396.html
   My bibliography  Save this article

predPhogly-Site: Predicting phosphoglycerylation sites by incorporating probabilistic sequence-coupling information into PseAAC and addressing data imbalance

Author

Listed:
  • Sabit Ahmed
  • Afrida Rahman
  • Md Al Mehedi Hasan
  • Md Khaled Ben Islam
  • Julia Rahman
  • Shamim Ahmad

Abstract

Post-translational modification (PTM) involves covalent modification after the biosynthesis process and plays an essential role in the study of cell biology. Lysine phosphoglycerylation, a newly discovered reversible type of PTM that affects glycolytic enzyme activities, and is responsible for a wide variety of diseases, such as heart failure, arthritis, and degeneration of the nervous system. Our goal is to computationally characterize potential phosphoglycerylation sites to understand the functionality and causality more accurately. In this study, a novel computational tool, referred to as predPhogly-Site, has been developed to predict phosphoglycerylation sites in the protein. It has effectively utilized the probabilistic sequence-coupling information among the nearby amino acid residues of phosphoglycerylation sites along with a variable cost adjustment for the skewed training dataset to enhance the prediction characteristics. It has achieved around 99% accuracy with more than 0.96 MCC and 0.97 AUC in both 10-fold cross-validation and independent test. Even, the standard deviation in 10-fold cross-validation is almost negligible. This performance indicates that predPhogly-Site remarkably outperformed the existing prediction tools and can be used as a promising predictor, preferably with its web interface at http://103.99.176.239/predPhogly-Site.

Suggested Citation

  • Sabit Ahmed & Afrida Rahman & Md Al Mehedi Hasan & Md Khaled Ben Islam & Julia Rahman & Shamim Ahmad, 2021. "predPhogly-Site: Predicting phosphoglycerylation sites by incorporating probabilistic sequence-coupling information into PseAAC and addressing data imbalance," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-17, April.
  • Handle: RePEc:plo:pone00:0249396
    DOI: 10.1371/journal.pone.0249396
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249396
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0249396&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0249396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Xu & Xin Wen & Li-Shu Wen & Ling-Yun Wu & Nai-Yang Deng & Kuo-Chen Chou, 2014. "iNitro-Tyr: Prediction of Nitrotyrosine Sites in Proteins with General Pseudo Amino Acid Composition," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    2. Wei-Zhong Lin & Jian-An Fang & Xuan Xiao & Kuo-Chen Chou, 2011. "iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi-Qing Li & Le-Le Hu & Lei Chen & Kai-Yan Feng & Yu-Dong Cai & Kuo-Chen Chou, 2012. "Prediction of Protein Domain with mRMR Feature Selection and Analysis," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    2. Wenzheng Bao & Bin Yang & Rong Bao & Yuehui Chen, 2019. "LipoFNT: Lipoylation Sites Identification with Flexible Neural Tree," Complexity, Hindawi, vol. 2019, pages 1-9, July.
    3. Abdollah Dehzangi & Yosvany López & Sunil Pranit Lal & Ghazaleh Taherzadeh & Abdul Sattar & Tatsuhiko Tsunoda & Alok Sharma, 2018. "Improving succinylation prediction accuracy by incorporating the secondary structure via helix, strand and coil, and evolutionary information from profile bigrams," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-16, February.
    4. Xiao Wang & Guo-Zheng Li, 2012. "A Multi-Label Predictor for Identifying the Subcellular Locations of Singleplex and Multiplex Eukaryotic Proteins," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    5. Kuo-Chen Chou, 2020. "Showcase to Illustrate How the Web-Server iKcr-PseEns is Working," International Journal of Sciences, Office ijSciences, vol. 9(01), pages 85-95, January.
    6. Kuo Chen Chou, 2020. "How the Artificial Intelligence Tool iRNA-PseU is Working in Predicting the RNA Pseudouridine Sites?," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 24(2), pages 18055-18064, January.
    7. Yan Xu & Jun Ding & Ling-Yun Wu & Kuo-Chen Chou, 2013. "iSNO-PseAAC: Predict Cysteine S-Nitrosylation Sites in Proteins by Incorporating Position Specific Amino Acid Propensity into Pseudo Amino Acid Composition," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    8. Xin Ma & Jing Guo & Xiao Sun, 2016. "DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-20, December.
    9. Kuo-Chen Chou, 2020. "The pLoc_bal-mGneg Predictor is a Powerful Web-Server for Identifying the Subcellular Localization of Gram-Negative Bacterial Proteins based on their Sequences Information Alone," International Journal of Sciences, Office ijSciences, vol. 9(01), pages 27-34, January.
    10. Wu Zhu & Jian-an Fang & Yang Tang & Wenbing Zhang & Wei Du, 2012. "Digital IIR Filters Design Using Differential Evolution Algorithm with a Controllable Probabilistic Population Size," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    11. Jianjun He & Hong Gu & Wenqi Liu, 2012. "Imbalanced Multi-Modal Multi-Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-10, June.
    12. Bin Liu & Longyun Fang & Fule Liu & Xiaolong Wang & Junjie Chen & Kuo-Chen Chou, 2015. "Identification of Real MicroRNA Precursors with a Pseudo Structure Status Composition Approach," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-20, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0249396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.