IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0075826.html
   My bibliography  Save this article

PSI: A Comprehensive and Integrative Approach for Accurate Plant Subcellular Localization Prediction

Author

Listed:
  • Lili Liu
  • Zijun Zhang
  • Qian Mei
  • Ming Chen

Abstract

Predicting the subcellular localization of proteins conquers the major drawbacks of high-throughput localization experiments that are costly and time-consuming. However, current subcellular localization predictors are limited in scope and accuracy. In particular, most predictors perform well on certain locations or with certain data sets while poorly on others. Here, we present PSI, a novel high accuracy web server for plant subcellular localization prediction. PSI derives the wisdom of multiple specialized predictors via a joint-approach of group decision making strategy and machine learning methods to give an integrated best result. The overall accuracy obtained (up to 93.4%) was higher than best individual (CELLO) by ∼10.7%. The precision of each predicable subcellular location (more than 80%) far exceeds that of the individual predictors. It can also deal with multi-localization proteins. PSI is expected to be a powerful tool in protein location engineering as well as in plant sciences, while the strategy employed could be applied to other integrative problems. A user-friendly web server, PSI, has been developed for free access at http://bis.zju.edu.cn/psi/.

Suggested Citation

  • Lili Liu & Zijun Zhang & Qian Mei & Ming Chen, 2013. "PSI: A Comprehensive and Integrative Approach for Accurate Plant Subcellular Localization Prediction," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
  • Handle: RePEc:plo:pone00:0075826
    DOI: 10.1371/journal.pone.0075826
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075826
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0075826&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0075826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuo-Chen Chou & Hong-Bin Shen, 2010. "Plant-mPLoc: A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shibiao Wan & Man-Wai Mak & Sun-Yuan Kung, 2014. "HybridGO-Loc: Mining Hybrid Features on Gene Ontology for Predicting Subcellular Localization of Multi-Location Proteins," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi-Qing Li & Le-Le Hu & Lei Chen & Kai-Yan Feng & Yu-Dong Cai & Kuo-Chen Chou, 2012. "Prediction of Protein Domain with mRMR Feature Selection and Analysis," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    2. Xiao Wang & Guo-Zheng Li, 2012. "A Multi-Label Predictor for Identifying the Subcellular Locations of Singleplex and Multiplex Eukaryotic Proteins," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    3. Xuan Xiao & Zhi-Cheng Wu & Kuo-Chen Chou, 2011. "A Multi-Label Classifier for Predicting the Subcellular Localization of Gram-Negative Bacterial Proteins with Both Single and Multiple Sites," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-10, June.
    4. Yan Tong & Hui Huang & YuHua Wang, 2021. "Genome-Wide Analysis of the Trihelix Gene Family and Their Response to Cold Stress in Dendrobium officinale," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    5. Junzhe Cao & Wenqi Liu & Jianjun He & Hong Gu, 2013. "Mining Proteins with Non-Experimental Annotations Based on an Active Sample Selection Strategy for Predicting Protein Subcellular Localization," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-9, June.
    6. Shibiao Wan & Man-Wai Mak & Sun-Yuan Kung, 2014. "HybridGO-Loc: Mining Hybrid Features on Gene Ontology for Predicting Subcellular Localization of Multi-Location Proteins," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.
    7. Le-Le Hu & Tao Huang & Yu-Dong Cai & Kuo-Chen Chou, 2011. "Prediction of Body Fluids where Proteins are Secreted into Based on Protein Interaction Network," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-8, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0075826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.