IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0099565.html
   My bibliography  Save this article

Reliable Multi-Label Learning via Conformal Predictor and Random Forest for Syndrome Differentiation of Chronic Fatigue in Traditional Chinese Medicine

Author

Listed:
  • Huazhen Wang
  • Xin Liu
  • Bing Lv
  • Fan Yang
  • Yanzhu Hong

Abstract

Objective: Chronic Fatigue (CF) still remains unclear about its etiology, pathophysiology, nomenclature and diagnostic criteria in the medical community. Traditional Chinese medicine (TCM) adopts a unique diagnostic method, namely ‘bian zheng lun zhi’ or syndrome differentiation, to diagnose the CF with a set of syndrome factors, which can be regarded as the Multi-Label Learning (MLL) problem in the machine learning literature. To obtain an effective and reliable diagnostic tool, we use Conformal Predictor (CP), Random Forest (RF) and Problem Transformation method (PT) for the syndrome differentiation of CF. Methods and Materials: In this work, using PT method, CP-RF is extended to handle MLL problem. CP-RF applies RF to measure the confidence level (p-value) of each label being the true label, and then selects multiple labels whose p-values are larger than the pre-defined significance level as the region prediction. In this paper, we compare the proposed CP-RF with typical CP-NBC(Naïve Bayes Classifier), CP-KNN(K-Nearest Neighbors) and ML-KNN on CF dataset, which consists of 736 cases. Specifically, 95 symptoms are used to identify CF, and four syndrome factors are employed in the syndrome differentiation, including ‘spleen deficiency’, ‘heart deficiency’, ‘liver stagnation’ and ‘qi deficiency’. The Results: CP-RF demonstrates an outstanding performance beyond CP-NBC, CP-KNN and ML-KNN under the general metrics of subset accuracy, hamming loss, one-error, coverage, ranking loss and average precision. Furthermore, the performance of CP-RF remains steady at the large scale of confidence levels from 80% to 100%, which indicates its robustness to the threshold determination. In addition, the confidence evaluation provided by CP is valid and well-calibrated. Conclusion: CP-RF not only offers outstanding performance but also provides valid confidence evaluation for the CF syndrome differentiation. It would be well applicable to TCM practitioners and facilitate the utilities of objective, effective and reliable computer-based diagnosis tool.

Suggested Citation

  • Huazhen Wang & Xin Liu & Bing Lv & Fan Yang & Yanzhu Hong, 2014. "Reliable Multi-Label Learning via Conformal Predictor and Random Forest for Syndrome Differentiation of Chronic Fatigue in Traditional Chinese Medicine," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-14, June.
  • Handle: RePEc:plo:pone00:0099565
    DOI: 10.1371/journal.pone.0099565
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099565
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0099565&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0099565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. McCrone, Paul R. & Sharpe, Michael & Chalder, Trudie & Knapp, Martin & Johnson, Anthony L. & Goldsmith, Kimberley A. & White, Peter D., 2012. "Adaptive pacing, cognitive behaviour therapy, graded exercise, and specialist medical care for chronic fatigue syndrome: a cost-effectiveness analysis," LSE Research Online Documents on Economics 45274, London School of Economics and Political Science, LSE Library.
    2. Grigorios Tsoumakas & Ioannis Katakis, 2007. "Multi-Label Classification: An Overview," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 3(3), pages 1-13, July.
    3. Paul McCrone & Michael Sharpe & Trudie Chalder & Martin Knapp & Anthony L Johnson & Kimberley A Goldsmith & Peter D White, 2012. "Adaptive Pacing, Cognitive Behaviour Therapy, Graded Exercise, and Specialist Medical Care for Chronic Fatigue Syndrome: A Cost-Effectiveness Analysis," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-9, August.
    4. Xiao Wang & Guo-Zheng Li, 2012. "A Multi-Label Predictor for Identifying the Subcellular Locations of Singleplex and Multiplex Eukaryotic Proteins," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudia Fischer & Susanne Mayer & Nataša Perić & Judit Simon, 2022. "Harmonization issues in unit costing of service use for multi-country, multi-sectoral health economic evaluations: a scoping review," Health Economics Review, Springer, vol. 12(1), pages 1-13, December.
    2. Desirée Vos-Vromans & Silvia Evers & Ivan Huijnen & Albère Köke & Minou Hitters & Nieke Rijnders & Menno Pont & André Knottnerus & Rob Smeets, 2017. "Economic evaluation of multidisciplinary rehabilitation treatment versus cognitive behavioural therapy for patients with chronic fatigue syndrome: A randomized controlled trial," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-21, June.
    3. Margreet S H Wortman & Joran Lokkerbol & Johannes C van der Wouden & Bart Visser & Henriëtte E van der Horst & Tim C olde Hartman, 2018. "Cost-effectiveness of interventions for medically unexplained symptoms: A systematic review," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-23, October.
    4. Radu Cristian Alexandru Iacob & Vlad Cristian Monea & Dan Rădulescu & Andrei-Florin Ceapă & Traian Rebedea & Ștefan Trăușan-Matu, 2020. "AlgoLabel: A Large Dataset for Multi-Label Classification of Algorithmic Challenges," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    5. Azzini, Antonia & Cortesi, Nicola & Marrara, Stefania & Topalović, Amir, 2019. "A Multi-Label Machine Learning Approach to Support Pathologist's Histological Analysis," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2019), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 12-14 September 2019, pages 197-208, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    6. Xueying Zhang & Qinbao Song, 2015. "A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-30, April.
    7. Junming Yin & Jerry Luo & Susan A. Brown, 2021. "Learning from Crowdsourced Multi-labeling: A Variational Bayesian Approach," Information Systems Research, INFORMS, vol. 32(3), pages 752-773, September.
    8. Mohanrasu, S.S. & Janani, K. & Rakkiyappan, R., 2024. "A COPRAS-based Approach to Multi-Label Feature Selection for Text Classification," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 3-23.
    9. Bocheng Li & Yunqiu Zhang & Xusheng Wu, 2022. "DLKN-MLC: A Disease Prediction Model via Multi-Label Learning," IJERPH, MDPI, vol. 19(15), pages 1-15, August.
    10. Hamid Bekamiri & Daniel S. Hain & Roman Jurowetzki, 2021. "PatentSBERTa: A Deep NLP based Hybrid Model for Patent Distance and Classification using Augmented SBERT," Papers 2103.11933, arXiv.org, revised Oct 2021.
    11. Chaker Jebari, 2016. "Multi-Label Genre Classification of Web Pages Using an Adaptive Centroid-Based Classifier," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-21, March.
    12. Francisco J. Ribadas-Pena & Shuyuan Cao & Víctor M. Darriba Bilbao, 2022. "Improving Large-Scale k -Nearest Neighbor Text Categorization with Label Autoencoders," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    13. Tao Shu & Zhiyi Wang & Huading Jia & Wenjin Zhao & Jixian Zhou & Tao Peng, 2022. "Consumers’ Opinions towards Public Health Effects of Online Games: An Empirical Study Based on Social Media Comments in China," IJERPH, MDPI, vol. 19(19), pages 1-19, October.
    14. Bogaert, Matthias & Lootens, Justine & Van den Poel, Dirk & Ballings, Michel, 2019. "Evaluating multi-label classifiers and recommender systems in the financial service sector," European Journal of Operational Research, Elsevier, vol. 279(2), pages 620-634.
    15. Yi-Hui Chen & Eric Jui-Lin Lu & Yu-Ting Lin & Ya-Wen Cheng, 2016. "Document overlapping clustering using formal concept analysis," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 2(2), pages 28-34.
    16. D. Thorleuchter & D. Van Den Poel, 2013. "Semantic Compared Cross Impact Analysis," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/862, Ghent University, Faculty of Economics and Business Administration.
    17. Han Zou & Jing Ge & Ruichao Liu & Lin He, 2023. "Feature Recognition of Regional Architecture Forms Based on Machine Learning: A Case Study of Architecture Heritage in Hubei Province, China," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    18. Josef Schwaiger & Timo Hammerl & Johannsen Florian & Susanne Leist, 2021. "UR: SMART–A tool for analyzing social media content," Information Systems and e-Business Management, Springer, vol. 19(4), pages 1275-1320, December.
    19. Verwaeren, Jan & Waegeman, Willem & De Baets, Bernard, 2012. "Learning partial ordinal class memberships with kernel-based proportional odds models," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 928-942.
    20. D. Thorleuchter & D. Van Den Poel & A. Prinzie & -, 2010. "A compared R&D-based and patent-based cross impact analysis for identifying relationships between technologies," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/632, Ghent University, Faculty of Economics and Business Administration.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0099565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.