IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0011626.html
   My bibliography  Save this article

Probabilistic Daily ILI Syndromic Surveillance with a Spatio-Temporal Bayesian Hierarchical Model

Author

Listed:
  • Ta-Chien Chan
  • Chwan-Chuen King
  • Muh-Yong Yen
  • Po-Huang Chiang
  • Chao-Sheng Huang
  • Chuhsing K Hsiao

Abstract

Background: For daily syndromic surveillance to be effective, an efficient and sensible algorithm would be expected to detect aberrations in influenza illness, and alert public health workers prior to any impending epidemic. This detection or alert surely contains uncertainty, and thus should be evaluated with a proper probabilistic measure. However, traditional monitoring mechanisms simply provide a binary alert, failing to adequately address this uncertainty. Methods and Findings: Based on the Bayesian posterior probability of influenza-like illness (ILI) visits, the intensity of outbreak can be directly assessed. The numbers of daily emergency room ILI visits at five community hospitals in Taipei City during 2006–2007 were collected and fitted with a Bayesian hierarchical model containing meteorological factors such as temperature and vapor pressure, spatial interaction with conditional autoregressive structure, weekend and holiday effects, seasonality factors, and previous ILI visits. The proposed algorithm recommends an alert for action if the posterior probability is larger than 70%. External data from January to February of 2008 were retained for validation. The decision rule detects successfully the peak in the validation period. When comparing the posterior probability evaluation with the modified Cusum method, results show that the proposed method is able to detect the signals 1–2 days prior to the rise of ILI visits. Conclusions: This Bayesian hierarchical model not only constitutes a dynamic surveillance system but also constructs a stochastic evaluation of the need to call for alert. The monitoring mechanism provides earlier detection as well as a complementary tool for current surveillance programs.

Suggested Citation

  • Ta-Chien Chan & Chwan-Chuen King & Muh-Yong Yen & Po-Huang Chiang & Chao-Sheng Huang & Chuhsing K Hsiao, 2010. "Probabilistic Daily ILI Syndromic Surveillance with a Spatio-Temporal Bayesian Hierarchical Model," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-9, July.
  • Handle: RePEc:plo:pone00:0011626
    DOI: 10.1371/journal.pone.0011626
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011626
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0011626&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0011626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon Cauchemez & Alain-Jacques Valleron & Pierre-Yves Boëlle & Antoine Flahault & Neil M. Ferguson, 2008. "Estimating the impact of school closure on influenza transmission from Sentinel data," Nature, Nature, vol. 452(7188), pages 750-754, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kozhaya, Mireille, 2022. "The double burden: The impact of school closures on labor force participation of mothers," Ruhr Economic Papers 956, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    2. Ken T D Eames & Natasha L Tilston & Ellen Brooks-Pollock & W John Edmunds, 2012. "Measured Dynamic Social Contact Patterns Explain the Spread of H1N1v Influenza," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-8, March.
    3. Jérôme Adda, 2016. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 891-941.
    4. Han, Lili & Song, Sha & Pan, Qiuhui & He, Mingfeng, 2023. "The impact of multiple population-wide testing and social distancing on the transmission of an infectious disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Eiji Yamamura & Yoshiro Tsustsui, 2021. "The impact of closing schools on working from home during the COVID-19 pandemic: evidence using panel data from Japan," Review of Economics of the Household, Springer, vol. 19(1), pages 41-60, March.
    6. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    7. Casey B. Mulligan, 2021. "The incidence and magnitude of the health costs of in-person schooling during the COVID-19 pandemic," Public Choice, Springer, vol. 188(3), pages 303-332, September.
    8. T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    9. Pan Zhang & Zhouling Bai, 2024. "Leaving messages as coproduction: impact of government COVID-19 non-pharmaceutical interventions on citizens’ online participation in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    10. Judith Legrand & Joseph R Egan & Ian M Hall & Simon Cauchemez & Steve Leach & Neil M Ferguson, 2009. "Estimating the Location and Spatial Extent of a Covert Anthrax Release," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-9, April.
    11. Auliya A. Suwantika & Neily Zakiyah & Ajeng Diantini & Rizky Abdulah & Maarten J. Postma, 2020. "The Role of Administrative and Secondary Data in Estimating the Costs and Effects of School and Workplace Closures due to the COVID-19 Pandemic," Data, MDPI, vol. 5(4), pages 1-11, October.
    12. Nao Nukiwa-Souma & Alexanderyn Burmaa & Taro Kamigaki & Ishiin Od & Namuutsetsegiin Bayasgalan & Badarchiin Darmaa & Akira Suzuki & Pagbajabyn Nymadawa & Hitoshi Oshitani, 2012. "Influenza Transmission in a Community during a Seasonal Influenza A(H3N2) Outbreak (2010–2011) in Mongolia: A Community-Based Prospective Cohort Study," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    13. Jeffrey Shaman & Virginia E Pitzer & Cécile Viboud & Bryan T Grenfell & Marc Lipsitch, 2010. "Absolute Humidity and the Seasonal Onset of Influenza in the Continental United States," PLOS Biology, Public Library of Science, vol. 8(2), pages 1-13, February.
    14. Charles Stoecker & Nicholas J. Sanders & Alan Barreca, 2015. "Success is Something to Sneeze at: Influenza Mortality in Regions that Send Teams to the Super Bowl," Working Papers 1501, Tulane University, Department of Economics.
    15. Eiji Yamamura & Yoshiro Tsutsui, 2021. "Changing views about remote working during the COVID-19 pandemic: Evidence using panel data from Japan," Papers 2101.08480, arXiv.org.
    16. Ross, J.V. & Pagendam, D.E. & Pollett, P.K., 2009. "On parameter estimation in population models II: Multi-dimensional processes and transient dynamics," Theoretical Population Biology, Elsevier, vol. 75(2), pages 123-132.
    17. Toshihiko Matsuoka & Tomoki Sato & Tomoyuki Akita & Jiturou Yanagida & Hiroki Ohge & Masao Kuwabara & Junko Tanaka, 2016. "High Vaccination Coverage among Children during Influenza A(H1N1)pdm09 as a Potential Factor of Herd Immunity," IJERPH, MDPI, vol. 13(10), pages 1-17, October.
    18. Amanda C. Perofsky & Chelsea L. Hansen & Roy Burstein & Shanda Boyle & Robin Prentice & Cooper Marshall & David Reinhart & Ben Capodanno & Melissa Truong & Kristen Schwabe-Fry & Kayla Kuchta & Brian P, 2024. "Impacts of human mobility on the citywide transmission dynamics of 18 respiratory viruses in pre- and post-COVID-19 pandemic years," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Shoko Kawano & Masayuki Kakehashi, 2015. "Substantial Impact of School Closure on the Transmission Dynamics during the Pandemic Flu H1N1-2009 in Oita, Japan," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-15, December.
    20. Saki Saito & Mariko I. Ito & Takaaki Ohnishi, 2022. "Fluctuations in the Number of Stores by Industry During the COVID-19 Pandemic Based on Japanese Phone Book Entries," The Review of Socionetwork Strategies, Springer, vol. 16(2), pages 545-557, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0011626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.