IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0002148.html
   My bibliography  Save this article

On How Network Architecture Determines the Dominant Patterns of Spontaneous Neural Activity

Author

Listed:
  • Roberto F Galán

Abstract

In the absence of sensory stimulation, neocortical circuits display complex patterns of neural activity. These patterns are thought to reflect relevant properties of the network, including anatomical features like its modularity. It is also assumed that the synaptic connections of the network constrain the repertoire of emergent, spontaneous patterns. Although the link between network architecture and network activity has been extensively investigated in the last few years from different perspectives, our understanding of the relationship between the network connectivity and the structure of its spontaneous activity is still incomplete. Using a general mathematical model of neural dynamics we have studied the link between spontaneous activity and the underlying network architecture. In particular, here we show mathematically how the synaptic connections between neurons determine the repertoire of spatial patterns displayed in the spontaneous activity. To test our theoretical result, we have also used the model to simulate spontaneous activity of a neural network, whose architecture is inspired by the patchy organization of horizontal connections between cortical columns in the neocortex of primates and other mammals. The dominant spatial patterns of the spontaneous activity, calculated as its principal components, coincide remarkably well with those patterns predicted from the network connectivity using our theory. The equivalence between the concept of dominant pattern and the concept of attractor of the network dynamics is also demonstrated. This in turn suggests new ways of investigating encoding and storage capabilities of neural networks.

Suggested Citation

  • Roberto F Galán, 2008. "On How Network Architecture Determines the Dominant Patterns of Spontaneous Neural Activity," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-10, May.
  • Handle: RePEc:plo:pone00:0002148
    DOI: 10.1371/journal.pone.0002148
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002148
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0002148&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0002148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosa Cossart & Dmitriy Aronov & Rafael Yuste, 2003. "Attractor dynamics of network UP states in the neocortex," Nature, Nature, vol. 423(6937), pages 283-288, May.
    2. Tal Kenet & Dmitri Bibitchkov & Misha Tsodyks & Amiram Grinvald & Amos Arieli, 2003. "Spontaneously emerging cortical representations of visual attributes," Nature, Nature, vol. 425(6961), pages 954-956, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mite Mijalkov & Joana B Pereira & Giovanni Volpe, 2020. "Delayed correlations improve the reconstruction of the brain connectome," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-22, February.
    2. Hualou Liang & Hongbin Wang, 2017. "Structure-Function Network Mapping and Its Assessment via Persistent Homology," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milena Raffi & Ralph M Siegel, 2007. "A Functional Architecture of Optic Flow in the Inferior Parietal Lobule of the Behaving Monkey," PLOS ONE, Public Library of Science, vol. 2(2), pages 1-19, February.
    2. Bershadskii, A. & Ikegaya, Y., 2011. "Chaotic neuron clock," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 342-347.
    3. Martinez-Saito, Mario, 2022. "Discrete scaling and criticality in a chain of adaptive excitable integrators," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    4. Adrián Ponce-Alvarez & Biyu J He & Patric Hagmann & Gustavo Deco, 2015. "Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    5. Suchin S Gururangan & Alexander J Sadovsky & Jason N MacLean, 2014. "Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    6. Dejan Pecevski & Lars Buesing & Wolfgang Maass, 2011. "Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-25, December.
    7. Sreedhar S Kumar & Jan Wülfing & Samora Okujeni & Joschka Boedecker & Martin Riedmiller & Ulrich Egert, 2016. "Autonomous Optimization of Targeted Stimulation of Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-22, August.
    8. Emili Balaguer-Ballester & Christopher C Lapish & Jeremy K Seamans & Daniel Durstewitz, 2011. "Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-19, May.
    9. Haleigh N. Mulholland & Matthias Kaschube & Gordon B. Smith, 2024. "Self-organization of modular activity in immature cortical networks," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    11. Andreas Steimer & Kaspar Schindler, 2015. "Random Sampling with Interspike-Intervals of the Exponential Integrate and Fire Neuron: A Computational Interpretation of UP-States," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-26, July.
    12. Lars Buesing & Johannes Bill & Bernhard Nessler & Wolfgang Maass, 2011. "Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-22, November.
    13. Rong J. B. Zhu & Xue-Xin Wei, 2023. "Unsupervised approach to decomposing neural tuning variability," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Matteo Carandini, 2004. "Amplification of Trial-to-Trial Response Variability by Neurons in Visual Cortex," PLOS Biology, Public Library of Science, vol. 2(9), pages 1-1, August.
    15. Stefan Habenschuss & Zeno Jonke & Wolfgang Maass, 2013. "Stochastic Computations in Cortical Microcircuit Models," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-28, November.
    16. Mite Mijalkov & Joana B Pereira & Giovanni Volpe, 2020. "Delayed correlations improve the reconstruction of the brain connectome," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-22, February.
    17. Lior Matityahu & Naomi Gilin & Gideon A. Sarpong & Yara Atamna & Lior Tiroshi & Nicolas X. Tritsch & Jeffery R. Wickens & Joshua A. Goldberg, 2023. "Acetylcholine waves and dopamine release in the striatum," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    18. Christian Donner & Klaus Obermayer & Hideaki Shimazaki, 2017. "Approximate Inference for Time-Varying Interactions and Macroscopic Dynamics of Neural Populations," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-27, January.
    19. Jesús Pérez-Ortega & Alejandro Akrouh & Rafael Yuste, 2024. "Stimulus encoding by specific inactivation of cortical neurons," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0002148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.