IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002294.html
   My bibliography  Save this article

Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons

Author

Listed:
  • Dejan Pecevski
  • Lars Buesing
  • Wolfgang Maass

Abstract

An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (“explaining away”) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons. Author Summary: Experimental data from neuroscience have provided substantial knowledge about the intricate structure of cortical microcircuits, but their functional role, i.e. the computational calculus that they employ in order to interpret ambiguous stimuli, produce predictions, and derive movement plans has remained largely unknown. Earlier assumptions that these circuits implement a logic-like calculus have run into problems, because logical inference has turned out to be inadequate to solve inference problems in the real world which often exhibits substantial degrees of uncertainty. In this article we propose an alternative theoretical framework for examining the functional role of precisely structured motifs of cortical microcircuits and dendritic computations in complex neurons, based on probabilistic inference through sampling. We show that these structural details endow cortical columns and areas with the capability to represent complex knowledge about their environment in the form of higher order dependencies among salient variables. We show that it also enables them to use this knowledge for probabilistic inference that is capable to deal with uncertainty in stored knowledge and current observations. We demonstrate in computer simulations that the precisely structured neuronal microcircuits enable networks of spiking neurons to solve through their inherent stochastic dynamics a variety of complex probabilistic inference tasks.

Suggested Citation

  • Dejan Pecevski & Lars Buesing & Wolfgang Maass, 2011. "Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-25, December.
  • Handle: RePEc:plo:pcbi00:1002294
    DOI: 10.1371/journal.pcbi.1002294
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002294
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002294&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002294?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Attila Losonczy & Judit K. Makara & Jeffrey C. Magee, 2008. "Compartmentalized dendritic plasticity and input feature storage in neurons," Nature, Nature, vol. 452(7186), pages 436-441, March.
    2. Lars Buesing & Johannes Bill & Bernhard Nessler & Wolfgang Maass, 2011. "Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-22, November.
    3. Tal Kenet & Dmitri Bibitchkov & Misha Tsodyks & Amiram Grinvald & Amos Arieli, 2003. "Spontaneously emerging cortical representations of visual attributes," Nature, Nature, vol. 425(6961), pages 954-956, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernhard Nessler & Michael Pfeiffer & Lars Buesing & Wolfgang Maass, 2013. "Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-30, April.
    2. Robert Legenstein & Wolfgang Maass, 2014. "Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-27, October.
    3. Stefan Habenschuss & Zeno Jonke & Wolfgang Maass, 2013. "Stochastic Computations in Cortical Microcircuit Models," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Habenschuss & Zeno Jonke & Wolfgang Maass, 2013. "Stochastic Computations in Cortical Microcircuit Models," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-28, November.
    2. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    3. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    6. Lieder, Falk & Griffiths, Tom & Hsu, Ming, 2016. "Over-representation of extreme events in decision-making reflects rational use of cognitive resources," OSF Preprints kxxag, Center for Open Science.
    7. Bershadskii, A. & Ikegaya, Y., 2011. "Chaotic neuron clock," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 342-347.
    8. Zhenrui Liao & Kevin C. Gonzalez & Deborah M. Li & Catalina M. Yang & Donald Holder & Natalie E. McClain & Guofeng Zhang & Stephen W. Evans & Mariya Chavarha & Jane Simko & Christopher D. Makinson & M, 2024. "Functional architecture of intracellular oscillations in hippocampal dendrites," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Roberto F Galán, 2008. "On How Network Architecture Determines the Dominant Patterns of Spontaneous Neural Activity," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-10, May.
    10. Robert Legenstein & Wolfgang Maass, 2014. "Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-27, October.
    11. Adrián Ponce-Alvarez & Biyu J He & Patric Hagmann & Gustavo Deco, 2015. "Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    12. Haleigh N. Mulholland & Matthias Kaschube & Gordon B. Smith, 2024. "Self-organization of modular activity in immature cortical networks," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Ian Cone & Claudia Clopath, 2024. "Latent representations in hippocampal network model co-evolve with behavioral exploration of task structure," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    15. Bernhard Nessler & Michael Pfeiffer & Lars Buesing & Wolfgang Maass, 2013. "Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-30, April.
    16. Lars Buesing & Johannes Bill & Bernhard Nessler & Wolfgang Maass, 2011. "Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-22, November.
    17. Rong J. B. Zhu & Xue-Xin Wei, 2023. "Unsupervised approach to decomposing neural tuning variability," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Richard D Lange & Ankani Chattoraj & Jeffrey M Beck & Jacob L Yates & Ralf M Haefner, 2021. "A confirmation bias in perceptual decision-making due to hierarchical approximate inference," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-30, November.
    19. Robert Legenstein & Niko Wilbert & Laurenz Wiskott, 2010. "Reinforcement Learning on Slow Features of High-Dimensional Input Streams," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-13, August.
    20. Hanle Zheng & Zhong Zheng & Rui Hu & Bo Xiao & Yujie Wu & Fangwen Yu & Xue Liu & Guoqi Li & Lei Deng, 2024. "Temporal dendritic heterogeneity incorporated with spiking neural networks for learning multi-timescale dynamics," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.