IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003710.html
   My bibliography  Save this article

Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex

Author

Listed:
  • Suchin S Gururangan
  • Alexander J Sadovsky
  • Jason N MacLean

Abstract

Correlations in local neocortical spiking activity can provide insight into the underlying organization of cortical microcircuitry. However, identifying structure in patterned multi-neuronal spiking remains a daunting task due to the high dimensionality of the activity. Using two-photon imaging, we monitored spontaneous circuit dynamics in large, densely sampled neuronal populations within slices of mouse primary auditory, somatosensory, and visual cortex. Using the lagged correlation of spiking activity between neurons, we generated functional wiring diagrams to gain insight into the underlying neocortical circuitry. By establishing the presence of graph invariants, which are label-independent characteristics common to all circuit topologies, our study revealed organizational features that generalized across functionally distinct cortical regions. Regardless of sensory area, random and -nearest neighbors null graphs failed to capture the structure of experimentally derived functional circuitry. These null models indicated that despite a bias in the data towards spatially proximal functional connections, functional circuit structure is best described by non-random and occasionally distal connections. Eigenvector centrality, which quantifies the importance of a neuron in the temporal flow of circuit activity, was highly related to feedforwardness in all functional circuits. The number of nodes participating in a functional circuit did not scale with the number of neurons imaged regardless of sensory area, indicating that circuit size is not tied to the sampling of neocortex. Local circuit flow comprehensively covered angular space regardless of the spatial scale that we tested, demonstrating that circuitry itself does not bias activity flow toward pia. Finally, analysis revealed that a minimal numerical sample size of neurons was necessary to capture at least 90 percent of functional circuit topology. These data and analyses indicated that functional circuitry exhibited rules of organization which generalized across three areas of sensory neocortex.Author Summary: Information in the brain is represented and processed by populations of interconnected neurons. However, there is a lack of a clear understanding of the structure and organization of circuit wiring, particularly at the mesoscale which spans multiple columns and layers. In this study, we sought to evaluate whether functional circuit architecture generalizes across the neocortex, testing the existence of a functional analogue to the neocortical microcircuit hypothesis. We analyzed the correlational structure of spontaneous circuit activations in primary auditory, somatosensory, and visual neocortex to generate functional topologies. In these graphs, neurons were represented as nodes, and time-lagged firing between neurons were directed edges. Edge weights reflected how many times the lagged firing occurred and was synonymous to the strength of the functional connection between two neurons. The presence of label-independent features, identified by investigating functional circuit topologies under a graph invariant framework, suggest that functionally distinct areas of the neocortex carry features of a generalized functional cortical circuit. Furthermore, our analyses show that the simultaneous recording of large sections of cortical circuitry is necessary to recognize these features and avoid undersampling errors.

Suggested Citation

  • Suchin S Gururangan & Alexander J Sadovsky & Jason N MacLean, 2014. "Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
  • Handle: RePEc:plo:pcbi00:1003710
    DOI: 10.1371/journal.pcbi.1003710
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003710
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003710&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosa Cossart & Dmitriy Aronov & Rafael Yuste, 2003. "Attractor dynamics of network UP states in the neocortex," Nature, Nature, vol. 423(6937), pages 283-288, May.
    2. Yumiko Yoshimura & Jami L. M. Dantzker & Edward M. Callaway, 2005. "Excitatory cortical neurons form fine-scale functional networks," Nature, Nature, vol. 433(7028), pages 868-873, February.
    3. Kenneth D. Harris & Thomas D. Mrsic-Flogel, 2013. "Cortical connectivity and sensory coding," Nature, Nature, vol. 503(7474), pages 51-58, November.
    4. Ho Ko & Lee Cossell & Chiara Baragli & Jan Antolik & Claudia Clopath & Sonja B. Hofer & Thomas D. Mrsic-Flogel, 2013. "The emergence of functional microcircuits in visual cortex," Nature, Nature, vol. 496(7443), pages 96-100, April.
    5. Berens, Philipp, 2009. "CircStat: A MATLAB Toolbox for Circular Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i10).
    6. Sinisa Pajevic & Dietmar Plenz, 2009. "Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-20, January.
    7. Ho Ko & Sonja B. Hofer & Bruno Pichler & Katherine A. Buchanan & P. Jesper Sjöström & Thomas D. Mrsic-Flogel, 2011. "Functional specificity of local synaptic connections in neocortical networks," Nature, Nature, vol. 473(7345), pages 87-91, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
    2. Yoav Printz & Pritish Patil & Mathias Mahn & Asaf Benjamin & Anna Litvin & Rivka Levy & Max Bringmann & Ofer Yizhar, 2023. "Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Bettina Voelcker & Ravi Pancholi & Simon Peron, 2022. "Transformation of primary sensory cortical representations from layer 4 to layer 2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    5. Pierre Yger & Kenneth D Harris, 2013. "The Convallis Rule for Unsupervised Learning in Cortical Networks," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-16, October.
    6. Sadra Sadeh & Stefan Rotter, 2015. "Orientation Selectivity in Inhibition-Dominated Networks of Spiking Neurons: Effect of Single Neuron Properties and Network Dynamics," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-17, January.
    7. Joshua M. Diamond & Julio I. Chapeton & Weizhen Xie & Samantha N. Jackson & Sara K. Inati & Kareem A. Zaghloul, 2024. "Focal seizures induce spatiotemporally organized spiking activity in the human cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    9. Williams-García, Rashid V. & Nicolis, Stam, 2022. "Route to chaos in a branching model of neural network dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    10. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Jennifer B Tennessen & Marla M Holt & Brianna M Wright & M Bradley Hanson & Candice K Emmons & Deborah A Giles & Jeffrey T Hogan & Sheila J Thornton & Volker B Deecke, 2023. "Divergent foraging strategies between populations of sympatric matrilineal killer whales," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(3), pages 373-386.
    12. Thomas Schreiner & Marit Petzka & Tobias Staudigl & Bernhard P. Staresina, 2023. "Respiration modulates sleep oscillations and memory reactivation in humans," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    14. Christopher Ebsch & Robert Rosenbaum, 2018. "Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-28, March.
    15. Thomas Schreiner & Elisabeth Kaufmann & Soheyl Noachtar & Jan-Hinnerk Mehrkens & Tobias Staudigl, 2022. "The human thalamus orchestrates neocortical oscillations during NREM sleep," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    17. Alireza Saeedi & Kun Wang & Ghazaleh Nikpourian & Andreas Bartels & Nikos K. Logothetis & Nelson K. Totah & Masataka Watanabe, 2024. "Brightness illusions drive a neuronal response in the primary visual cortex under top-down modulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Masakazu Agetsuma & Issei Sato & Yasuhiro R. Tanaka & Luis Carrillo-Reid & Atsushi Kasai & Atsushi Noritake & Yoshiyuki Arai & Miki Yoshitomo & Takashi Inagaki & Hiroshi Yukawa & Hitoshi Hashimoto & J, 2023. "Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    19. Brian B. Jeon & Thomas Fuchs & Steven M. Chase & Sandra J. Kuhlman, 2022. "Existing function in primary visual cortex is not perturbed by new skill acquisition of a non-matched sensory task," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.