IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0020023.html
   My bibliography  Save this article

The Emergence of Up and Down States in Cortical Networks

Author

Listed:
  • David Holcman
  • Misha Tsodyks

Abstract

The cerebral cortex is continuously active in the absence of external stimuli. An example of this spontaneous activity is the voltage transition between an Up and a Down state, observed simultaneously at individual neurons. Since this phenomenon could be of critical importance for working memory and attention, its explanation could reveal some fundamental properties of cortical organization. To identify a possible scenario for the dynamics of Up–Down states, we analyze a reduced stochastic dynamical system that models an interconnected network of excitatory neurons with activity-dependent synaptic depression. The model reveals that when the total synaptic connection strength exceeds a certain threshold, the phase space of the dynamical system contains two attractors, interpreted as Up and Down states. In that case, synaptic noise causes transitions between the states. Moreover, an external stimulation producing a depolarization increases the time spent in the Up state, as observed experimentally. We therefore propose that the existence of Up–Down states is a fundamental and inherent property of a noisy neural ensemble with sufficiently strong synaptic connections.Synopsis: The cerebral cortex is continuously active in the absence of sensory stimuli. An example of this spontaneous activity is the phenomenon of voltage transitions between two distinct levels, called Up and Down states, observed simultaneously when recoding from many neurons. This phenomenon could be of a critical importance for working memory and attention. Thus, uncovering its biological mechanism could reveal fundamental properties of the cortical organization. In this theoretical contribution, Holcman and Tsodyks propose a mathematical model of cortical dynamics that exhibits spontaneous transitions between Up and Down states. The model describes an activity of a network of interconnected neurons. A crucial component of the model is synaptic depression of interneuronal connections, which is a well-known effect that characterizes many types of synaptic connections in the cortex. Despite its simplicity, the model reproduces many properties of Up–Down transitions that were experimentally observed, and makes several intriguing predictions for future experiments. In particular, the model predicts that the time that a network spends in the Up state is highly variable, changing from a fraction of a second to more than ten seconds, which could have some interesting implications for the temporal characteristics of working memory.

Suggested Citation

  • David Holcman & Misha Tsodyks, 2006. "The Emergence of Up and Down States in Cortical Networks," PLOS Computational Biology, Public Library of Science, vol. 2(3), pages 1-8, March.
  • Handle: RePEc:plo:pcbi00:0020023
    DOI: 10.1371/journal.pcbi.0020023
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0020023
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0020023&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0020023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosa Cossart & Dmitriy Aronov & Rafael Yuste, 2003. "Attractor dynamics of network UP states in the neocortex," Nature, Nature, vol. 423(6937), pages 283-288, May.
    2. Yousheng Shu & Andrea Hasenstaub & David A. McCormick, 2003. "Turning on and off recurrent balanced cortical activity," Nature, Nature, vol. 423(6937), pages 288-293, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Hidalgo & Luís F Seoane & Jesús M Cortés & Miguel A Muñoz, 2012. "Stochastic Amplification of Fluctuations in Cortical Up-States," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-8, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sreedhar S Kumar & Jan Wülfing & Samora Okujeni & Joschka Boedecker & Martin Riedmiller & Ulrich Egert, 2016. "Autonomous Optimization of Targeted Stimulation of Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-22, August.
    2. Andreas Steimer & Kaspar Schindler, 2015. "Random Sampling with Interspike-Intervals of the Exponential Integrate and Fire Neuron: A Computational Interpretation of UP-States," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-26, July.
    3. Jorge Hidalgo & Luís F Seoane & Jesús M Cortés & Miguel A Muñoz, 2012. "Stochastic Amplification of Fluctuations in Cortical Up-States," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-8, August.
    4. Ashok Litwin-Kumar & Anne-Marie M Oswald & Nathaniel N Urban & Brent Doiron, 2011. "Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-14, December.
    5. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    6. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    7. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    8. Franz X. Mittermaier & Thilo Kalbhenn & Ran Xu & Julia Onken & Katharina Faust & Thomas Sauvigny & Ulrich W. Thomale & Angela M. Kaindl & Martin Holtkamp & Sabine Grosser & Pawel Fidzinski & Matthias , 2024. "Membrane potential states gate synaptic consolidation in human neocortical tissue," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Milena Raffi & Ralph M Siegel, 2007. "A Functional Architecture of Optic Flow in the Inferior Parietal Lobule of the Behaving Monkey," PLOS ONE, Public Library of Science, vol. 2(2), pages 1-19, February.
    10. Martinez-Saito, Mario, 2022. "Discrete scaling and criticality in a chain of adaptive excitable integrators," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    11. Eunhye Cho & Jii Kwon & Gyuwon Lee & Jiwoo Shin & Hyunsu Lee & Suk-Ho Lee & Chun Kee Chung & Jaeyoung Yoon & Won-Kyung Ho, 2024. "Net synaptic drive of fast-spiking interneurons is inverted towards inhibition in human FCD I epilepsy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Roberto F Galán, 2008. "On How Network Architecture Determines the Dominant Patterns of Spontaneous Neural Activity," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-10, May.
    13. Kyriaki Sidiropoulou & Panayiota Poirazi, 2012. "Predictive Features of Persistent Activity Emergence in Regular Spiking and Intrinsic Bursting Model Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-15, April.
    14. Alon Poleg-Polsky & Jeffrey S Diamond, 2011. "Imperfect Space Clamp Permits Electrotonic Interactions between Inhibitory and Excitatory Synaptic Conductances, Distorting Voltage Clamp Recordings," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-11, April.
    15. Sen Song & Per Jesper Sjöström & Markus Reigl & Sacha Nelson & Dmitri B Chklovskii, 2005. "Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits," PLOS Biology, Public Library of Science, vol. 3(3), pages 1-1, March.
    16. Suchin S Gururangan & Alexander J Sadovsky & Jason N MacLean, 2014. "Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    17. Krishna Choudhary & Sven Berberich & Thomas T. G. Hahn & James M. McFarland & Mayank R. Mehta, 2024. "Spontaneous persistent activity and inactivity in vivo reveals differential cortico-entorhinal functional connectivity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Cheng-Te Wang & Chung-Ting Lee & Xiao-Jing Wang & Chung-Chuan Lo, 2013. "Top-Down Modulation on Perceptual Decision with Balanced Inhibition through Feedforward and Feedback Inhibitory Neurons," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-14, April.
    19. Emili Balaguer-Ballester & Christopher C Lapish & Jeremy K Seamans & Daniel Durstewitz, 2011. "Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-19, May.
    20. Adam Ponzi & Jeffery R Wickens, 2013. "Optimal Balance of the Striatal Medium Spiny Neuron Network," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-21, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0020023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.