Using Genetic Distance to Infer the Accuracy of Genomic Prediction
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pgen.1006288
Download full text from publisher
References listed on IDEAS
- Gad Abraham & Jason A Tye-Din & Oneil G Bhalala & Adam Kowalczyk & Justin Zobel & Michael Inouye, 2014. "Accurate and Robust Genomic Prediction of Celiac Disease Using Statistical Learning," PLOS Genetics, Public Library of Science, vol. 10(2), pages 1-15, February.
- Jennifer Spindel & Hasina Begum & Deniz Akdemir & Parminder Virk & Bertrand Collard & Edilberto Redoña & Gary Atlin & Jean-Luc Jannink & Susan R McCouch, 2015. "Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic," PLOS Genetics, Public Library of Science, vol. 11(2), pages 1-25, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Brieuc Lehmann & Maxine Mackintosh & Gil McVean & Chris Holmes, 2023. "Optimal strategies for learning multi-ancestry polygenic scores vary across traits," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Pietro Biroli & Titus Galama & Stephanie von Hinke & Hans van Kippersluis & Cornelius Rietveld & Kevin Thom, 2022.
"The Economics and Econometrics of Gene-Environment Interplay,"
Tinbergen Institute Discussion Papers
22-019/V, Tinbergen Institute.
- Pietro Biroli & Titus Galama & Stephanie von Hinke & Hans van Kippersluis & Kevin Thom, 2022. "Economics and Econometrics of Gene-Environment Interplay," Bristol Economics Discussion Papers 22/759, School of Economics, University of Bristol, UK.
- Pietro Biroli & Titus J. Galama & Stephanie von Hinke & Hans van Kippersluis & Cornelius A. Rietveld & Kevin Thom, 2022. "The Economics and Econometrics of Gene-Environment Interplay," Papers 2203.00729, arXiv.org.
- Pietro Biroli & Titus Galama & Stephanie von Hinke & Hans van Kippersluis & Cornelius Rietveld & Kevin Thom, 2022. "The Economics and Econometrics of Gene-Environment Interplay," Working Papers 2022-005, Human Capital and Economic Opportunity Working Group.
- Alexa S. Lupi & Ana I. Vazquez & Gustavo de los Campos, 2024. "Mapping the relative accuracy of cross-ancestry prediction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Charles‐Elie Rabier & Simona Grusea, 2021. "Prediction in high‐dimensional linear models and application to genomic selection under imperfect linkage disequilibrium," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1001-1026, August.
- Charles-Elie Rabier & Philippe Barre & Torben Asp & Gilles Charmet & Brigitte Mangin, 2016. "On the Accuracy of Genomic Selection," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-23, June.
- Aditi Bhandari & Jérôme Bartholomé & Tuong-Vi Cao-Hamadoun & Nilima Kumari & Julien Frouin & Arvind Kumar & Nourollah Ahmadi, 2019. "Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-21, May.
- Gabriela França Oliveira & Ana Carolina Campana Nascimento & Moysés Nascimento & Isabela de Castro Sant'Anna & Juan Vicente Romero & Camila Ferreira Azevedo & Leonardo Lopes Bhering & Eveline Teixeira, 2021. "Quantile regression in genomic selection for oligogenic traits in autogamous plants: A simulation study," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-12, January.
- Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
- Shin-Fu Tsai & Chih-Chien Shen & Chen-Tuo Liao, 2021. "Bayesian Optimization Approaches for Identifying the Best Genotype from a Candidate Population," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 519-537, December.
- Shiori Yabe & Masanori Yamasaki & Kaworu Ebana & Takeshi Hayashi & Hiroyoshi Iwata, 2016. "Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-21, April.
- Prabin Bajgain & James A. Anderson, 2021. "Multi-Allelic Haplotype-Based Association Analysis Identifies Genomic Regions Controlling Domestication Traits in Intermediate Wheatgrass," Agriculture, MDPI, vol. 11(7), pages 1-15, July.
- Laviola, Bruno Galvêas & Rodrigues, Erina Vitório & Teodoro, Paulo Eduardo & Peixoto, Leonardo de Azevedo & Bhering, Leonardo Lopes, 2017. "Biometric and biotechnology strategies in Jatropha genetic breeding for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 894-904.
- Md. S. Islam & Per McCord & Quentin D. Read & Lifang Qin & Alexander E. Lipka & Sushma Sood & James Todd & Marcus Olatoye, 2022. "Accuracy of Genomic Prediction of Yield and Sugar Traits in Saccharum spp. Hybrids," Agriculture, MDPI, vol. 12(9), pages 1-22, September.
- Muhammad Junaid Zaghum & Kashir Ali & Sheng Teng, 2022. "Integrated Genetic and Omics Approaches for the Regulation of Nutritional Activities in Rice ( Oryza sativa L.)," Agriculture, MDPI, vol. 12(11), pages 1-17, October.
- Julien Frouin & Axel Labeyrie & Arnaud Boisnard & Gian Attilio Sacchi & Nourollah Ahmadi, 2019. "Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-22, June.
- Yusuke Toda & Hitomi Wakatsuki & Toru Aoike & Hiromi Kajiya-Kanegae & Masanori Yamasaki & Takuma Yoshioka & Kaworu Ebana & Takeshi Hayashi & Hiroshi Nakagawa & Toshihiro Hasegawa & Hiroyoshi Iwata, 2020. "Predicting biomass of rice with intermediate traits: Modeling method combining crop growth models and genomic prediction models," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-21, June.
- Ramin Rayee & Hoang-Dung Tran & Tran Dang Xuan & Tran Dang Khanh, 2018. "Imposed Water Deficit after Anthesis for the Improvement of Macronutrients, Quality, Phytochemicals, and Antioxidants in Rice Grain," Sustainability, MDPI, vol. 10(12), pages 1-12, December.
- Cécile Grenier & Tuong-Vi Cao & Yolima Ospina & Constanza Quintero & Marc Henri Châtel & Joe Tohme & Brigitte Courtois & Nourollah Ahmadi, 2015. "Accuracy of Genomic Selection in a Rice Synthetic Population Developed for Recurrent Selection Breeding," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-25, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1006288. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.