IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0217516.html
   My bibliography  Save this article

Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains

Author

Listed:
  • Julien Frouin
  • Axel Labeyrie
  • Arnaud Boisnard
  • Gian Attilio Sacchi
  • Nourollah Ahmadi

Abstract

The high concentration of arsenic (As) in rice grains, in a large proportion of the rice growing areas, is a critical issue. This study explores the feasibility of conventional (QTL-based) marker-assisted selection and genomic selection to improve the ability of rice to prevent As uptake and accumulation in the edible grains. A japonica diversity panel (RP) of 228 accessions phenotyped for As concentration in the flag leaf (FL-As) and in the dehulled grain (CG-As), and genotyped at 22,370 SNP loci, was used to map QTLs by association analysis (GWAS) and to train genomic prediction models. Similar phenotypic and genotypic data from 95 advanced breeding lines (VP) with japonica genetic backgrounds, was used to validate related QTLs mapped in the RP through GWAS and to evaluate the predictive ability of across populations (RP-VP) genomic estimate of breeding value (GEBV) for As exclusion. Several QTLs for FL-As and CG-As with a low-medium individual effect were detected in the RP, of which some colocalized with known QTLs and candidate genes. However, less than 10% of those QTLs could be validated in the VP without loosening colocalization parameters. Conversely, the average predictive ability of across populations GEBV was rather high, 0.43 for FL-As and 0.48 for CG-As, ensuring genetic gains per time unit close to phenotypic selection. The implications of the limited robustness of the GWAS results and the rather high predictive ability of genomic prediction are discussed for breeding rice for significantly low arsenic uptake and accumulation in the edible grains.

Suggested Citation

  • Julien Frouin & Axel Labeyrie & Arnaud Boisnard & Gian Attilio Sacchi & Nourollah Ahmadi, 2019. "Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-22, June.
  • Handle: RePEc:plo:pone00:0217516
    DOI: 10.1371/journal.pone.0217516
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217516
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0217516&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0217516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cécile Grenier & Tuong-Vi Cao & Yolima Ospina & Constanza Quintero & Marc Henri Châtel & Joe Tohme & Brigitte Courtois & Nourollah Ahmadi, 2015. "Accuracy of Genomic Selection in a Rice Synthetic Population Developed for Recurrent Selection Breeding," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-25, August.
    2. Charles-Elie Rabier & Philippe Barre & Torben Asp & Gilles Charmet & Brigitte Mangin, 2016. "On the Accuracy of Genomic Selection," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-23, June.
    3. Magnus Nordborg & Detlef Weigel, 2008. "Next-generation genetics in plants," Nature, Nature, vol. 456(7223), pages 720-723, December.
    4. Jennifer Spindel & Hasina Begum & Deniz Akdemir & Parminder Virk & Bertrand Collard & Edilberto Redoña & Gary Atlin & Jean-Luc Jannink & Susan R McCouch, 2015. "Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic," PLOS Genetics, Public Library of Science, vol. 11(2), pages 1-25, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles‐Elie Rabier & Simona Grusea, 2021. "Prediction in high‐dimensional linear models and application to genomic selection under imperfect linkage disequilibrium," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1001-1026, August.
    2. Aditi Bhandari & Jérôme Bartholomé & Tuong-Vi Cao-Hamadoun & Nilima Kumari & Julien Frouin & Arvind Kumar & Nourollah Ahmadi, 2019. "Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-21, May.
    3. Muhammad Junaid Zaghum & Kashir Ali & Sheng Teng, 2022. "Integrated Genetic and Omics Approaches for the Regulation of Nutritional Activities in Rice ( Oryza sativa L.)," Agriculture, MDPI, vol. 12(11), pages 1-17, October.
    4. Karim Karimi & Mehdi Sargolzaei & Graham Stuart Plastow & Zhiquan Wang & Younes Miar, 2019. "Opportunities for genomic selection in American mink: A simulation study," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.
    5. Charles-Elie Rabier & Philippe Barre & Torben Asp & Gilles Charmet & Brigitte Mangin, 2016. "On the Accuracy of Genomic Selection," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-23, June.
    6. Gabriela França Oliveira & Ana Carolina Campana Nascimento & Moysés Nascimento & Isabela de Castro Sant'Anna & Juan Vicente Romero & Camila Ferreira Azevedo & Leonardo Lopes Bhering & Eveline Teixeira, 2021. "Quantile regression in genomic selection for oligogenic traits in autogamous plants: A simulation study," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-12, January.
    7. Sean Myles & Jer-Ming Chia & Bonnie Hurwitz & Charles Simon & Gan Yuan Zhong & Edward Buckler & Doreen Ware, 2010. "Rapid Genomic Characterization of the Genus Vitis," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    8. Shin-Fu Tsai & Chih-Chien Shen & Chen-Tuo Liao, 2021. "Bayesian Optimization Approaches for Identifying the Best Genotype from a Candidate Population," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 519-537, December.
    9. Shiori Yabe & Masanori Yamasaki & Kaworu Ebana & Takeshi Hayashi & Hiroyoshi Iwata, 2016. "Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-21, April.
    10. Prabin Bajgain & James A. Anderson, 2021. "Multi-Allelic Haplotype-Based Association Analysis Identifies Genomic Regions Controlling Domestication Traits in Intermediate Wheatgrass," Agriculture, MDPI, vol. 11(7), pages 1-15, July.
    11. Marco Scutari & Ian Mackay & David Balding, 2016. "Using Genetic Distance to Infer the Accuracy of Genomic Prediction," PLOS Genetics, Public Library of Science, vol. 12(9), pages 1-19, September.
    12. Laviola, Bruno Galvêas & Rodrigues, Erina Vitório & Teodoro, Paulo Eduardo & Peixoto, Leonardo de Azevedo & Bhering, Leonardo Lopes, 2017. "Biometric and biotechnology strategies in Jatropha genetic breeding for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 894-904.
    13. Md. S. Islam & Per McCord & Quentin D. Read & Lifang Qin & Alexander E. Lipka & Sushma Sood & James Todd & Marcus Olatoye, 2022. "Accuracy of Genomic Prediction of Yield and Sugar Traits in Saccharum spp. Hybrids," Agriculture, MDPI, vol. 12(9), pages 1-22, September.
    14. Yusuke Toda & Hitomi Wakatsuki & Toru Aoike & Hiromi Kajiya-Kanegae & Masanori Yamasaki & Takuma Yoshioka & Kaworu Ebana & Takeshi Hayashi & Hiroshi Nakagawa & Toshihiro Hasegawa & Hiroyoshi Iwata, 2020. "Predicting biomass of rice with intermediate traits: Modeling method combining crop growth models and genomic prediction models," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-21, June.
    15. Ramin Rayee & Hoang-Dung Tran & Tran Dang Xuan & Tran Dang Khanh, 2018. "Imposed Water Deficit after Anthesis for the Improvement of Macronutrients, Quality, Phytochemicals, and Antioxidants in Rice Grain," Sustainability, MDPI, vol. 10(12), pages 1-12, December.
    16. Limeng Jia & Wengui Yan & Chengsong Zhu & Hesham A Agrama & Aaron Jackson & Kathleen Yeater & Xiaobai Li & Bihu Huang & Biaolin Hu & Anna McClung & Dianxing Wu, 2012. "Allelic Analysis of Sheath Blight Resistance with Association Mapping in Rice," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.
    17. Chengqi Cui & Yanyang Liu & Yan Liu & Xianghua Cui & Zhiyu Sun & Zhenwei Du & Ke Wu & Xiaolin Jiang & Hongxian Mei & Yongzhan Zheng, 2021. "Genome-wide association study of seed coat color in sesame (Sesamum indicum L.)," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-14, May.
    18. Cécile Grenier & Tuong-Vi Cao & Yolima Ospina & Constanza Quintero & Marc Henri Châtel & Joe Tohme & Brigitte Courtois & Nourollah Ahmadi, 2015. "Accuracy of Genomic Selection in a Rice Synthetic Population Developed for Recurrent Selection Breeding," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-25, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0217516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.