IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009661.html
   My bibliography  Save this article

Dynamic maximum entropy provides accurate approximation of structured population dynamics

Author

Listed:
  • Katarína Bod’ová
  • Enikő Szép
  • Nicholas H Barton

Abstract

Realistic models of biological processes typically involve interacting components on multiple scales, driven by changing environment and inherent stochasticity. Such models are often analytically and numerically intractable. We revisit a dynamic maximum entropy method that combines a static maximum entropy with a quasi-stationary approximation. This allows us to reduce stochastic non-equilibrium dynamics expressed by the Fokker-Planck equation to a simpler low-dimensional deterministic dynamics, without the need to track microscopic details. Although the method has been previously applied to a few (rather complicated) applications in population genetics, our main goal here is to explain and to better understand how the method works. We demonstrate the usefulness of the method for two widely studied stochastic problems, highlighting its accuracy in capturing important macroscopic quantities even in rapidly changing non-stationary conditions. For the Ornstein-Uhlenbeck process, the method recovers the exact dynamics whilst for a stochastic island model with migration from other habitats, the approximation retains high macroscopic accuracy under a wide range of scenarios in a dynamic environment.Author summary: Complex processes in biology and physics have much in common. Collective motion of animals can be well described by models of interacting particles and emergent collective behavior can often be characterized as phase transitions of such a model. When the system is settled to a steady state, statistical physics connects random fluctuations of the process with key macroscopic quantities, using the maximum entropy method. It is thus not surprising that this method is in turn useful in understanding biological systems. However, realistic problems such as structured population dynamics, studied in our work, are set in dynamic environments, caused for instance by fluctuations in food supply. Therefore, we use the dynamical maximum entropy approximation, which allows us to reduce the full problem to simpler dynamics, without the need to track microscopic details. We focus on two processes (one in physics, one in biology) in our study: the motion of a charged particle and the dynamics of structured populations, both in a changing environment. We show that the method is extremely accurate even when the environmental changes are very fast, thus providing a powerful tool to study both biological and physical processes in changing environments.

Suggested Citation

  • Katarína Bod’ová & Enikő Szép & Nicholas H Barton, 2021. "Dynamic maximum entropy provides accurate approximation of structured population dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-22, December.
  • Handle: RePEc:plo:pcbi00:1009661
    DOI: 10.1371/journal.pcbi.1009661
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009661
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009661&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smith, Eric, 2024. "Beyond fitness: The information imparted in population states by selection throughout lifecycles," Theoretical Population Biology, Elsevier, vol. 157(C), pages 86-117.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lipovetsky, Stan, 2018. "Quantum paradigm of probability amplitude and complex utility in entangled discrete choice modeling," Journal of choice modelling, Elsevier, vol. 27(C), pages 62-73.
    2. Mark L Ioffe & Michael J Berry II, 2017. "The structured ‘low temperature’ phase of the retinal population code," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    3. MohammadReza Zahedian & Mahsa Bagherikalhor & Andrey Trufanov & G. Reza Jafari, 2022. "Financial Crisis in the Framework of Non-zero Temperature Balance Theory," Papers 2202.03198, arXiv.org.
    4. Gaëlle Desbordes & Jianzhong Jin & Chong Weng & Nicholas A Lesica & Garrett B Stanley & Jose-Manuel Alonso, 2008. "Timing Precision in Population Coding of Natural Scenes in the Early Visual System," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
    5. Yasser Roudi & Sheila Nirenberg & Peter E Latham, 2009. "Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    6. Maulana, Ardian & Situngkir, Hokky, 2015. "Korelasi Bebas-skala dalam Studi Geo-politik Pemilihan [Scale-free correlation within Geopolitics of Election Studies]," MPRA Paper 66351, University Library of Munich, Germany.
    7. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    8. Timothy R Lezon & Ivet Bahar, 2010. "Using Entropy Maximization to Understand the Determinants of Structural Dynamics beyond Native Contact Topology," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-12, June.
    9. Xiaoyuan Liu & Hayato Ushijima-Mwesigwa & Avradip Mandal & Sarvagya Upadhyay & Ilya Safro & Arnab Roy, 2022. "Leveraging special-purpose hardware for local search heuristics," Computational Optimization and Applications, Springer, vol. 82(1), pages 1-29, May.
    10. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    11. Sahar Gelfman & Quanli Wang & Yi-Fan Lu & Diana Hall & Christopher D Bostick & Ryan Dhindsa & Matt Halvorsen & K Melodi McSweeney & Ellese Cotterill & Tom Edinburgh & Michael A Beaumont & Wayne N Fran, 2018. "meaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-20, October.
    12. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    13. Simona Cocco & Remi Monasson & Martin Weigt, 2013. "From Principal Component to Direct Coupling Analysis of Coevolution in Proteins: Low-Eigenvalue Modes are Needed for Structure Prediction," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-17, August.
    14. Montani, Fernando & Phoka, Elena & Portesi, Mariela & Schultz, Simon R., 2013. "Statistical modelling of higher-order correlations in pools of neural activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3066-3086.
    15. Jan Humplik & Gašper Tkačik, 2017. "Probabilistic models for neural populations that naturally capture global coupling and criticality," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-26, September.
    16. Richard R Stein & Debora S Marks & Chris Sander, 2015. "Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-22, July.
    17. Ross S Williamson & Maneesh Sahani & Jonathan W Pillow, 2015. "The Equivalence of Information-Theoretic and Likelihood-Based Methods for Neural Dimensionality Reduction," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-31, April.
    18. Urs Köster & Jascha Sohl-Dickstein & Charles M Gray & Bruno A Olshausen, 2014. "Modeling Higher-Order Correlations within Cortical Microcolumns," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    19. N Blasco & P Corredor & S Ferreruela, 2011. "Detecting intentional herding: what lies beneath intraday data in the Spanish stock market," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1056-1066, June.
    20. Barbara Casillas-Pérez & Katarína Boďová & Anna V. Grasse & Gašper Tkačik & Sylvia Cremer, 2023. "Dynamic pathogen detection and social feedback shape collective hygiene in ants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.