IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0012686.html
   My bibliography  Save this article

Learning Priors for Bayesian Computations in the Nervous System

Author

Listed:
  • Max Berniker
  • Martin Voss
  • Konrad Kording

Abstract

Our nervous system continuously combines new information from our senses with information it has acquired throughout life. Numerous studies have found that human subjects manage this by integrating their observations with their previous experience (priors) in a way that is close to the statistical optimum. However, little is known about the way the nervous system acquires or learns priors. Here we present results from experiments where the underlying distribution of target locations in an estimation task was switched, manipulating the prior subjects should use. Our experimental design allowed us to measure a subject's evolving prior while they learned. We confirm that through extensive practice subjects learn the correct prior for the task. We found that subjects can rapidly learn the mean of a new prior while the variance is learned more slowly and with a variable learning rate. In addition, we found that a Bayesian inference model could predict the time course of the observed learning while offering an intuitive explanation for the findings. The evidence suggests the nervous system continuously updates its priors to enable efficient behavior.

Suggested Citation

  • Max Berniker & Martin Voss & Konrad Kording, 2010. "Learning Priors for Bayesian Computations in the Nervous System," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.
  • Handle: RePEc:plo:pone00:0012686
    DOI: 10.1371/journal.pone.0012686
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012686
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0012686&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0012686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Konrad P Körding & Ulrik Beierholm & Wei Ji Ma & Steven Quartz & Joshua B Tenenbaum & Ladan Shams, 2007. "Causal Inference in Multisensory Perception," PLOS ONE, Public Library of Science, vol. 2(9), pages 1-10, September.
    2. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elyse H Norton & Luigi Acerbi & Wei Ji Ma & Michael S Landy, 2019. "Human online adaptation to changes in prior probability," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-26, July.
    2. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2014. "On the Origins of Suboptimality in Human Probabilistic Inference," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
    3. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2017. "Target Uncertainty Mediates Sensorimotor Error Correction," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.
    4. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    5. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    6. Jannes Jegminat & Maya A Jastrzębowska & Matthew V Pachai & Michael H Herzog & Jean-Pascal Pfister, 2020. "Bayesian regression explains how human participants handle parameter uncertainty," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    7. Luigi Acerbi & Daniel M Wolpert & Sethu Vijayakumar, 2012. "Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    2. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    3. Jannes Jegminat & Maya A Jastrzębowska & Matthew V Pachai & Michael H Herzog & Jean-Pascal Pfister, 2020. "Bayesian regression explains how human participants handle parameter uncertainty," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    4. Guido Marco Cicchini & Giovanni D’Errico & David Charles Burr, 2022. "Crowding results from optimal integration of visual targets with contextual information," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    6. Amy A Kalia & Paul R Schrater & Gordon E Legge, 2013. "Combining Path Integration and Remembered Landmarks When Navigating without Vision," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    7. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    8. Geonhui Lee & Woong Choi & Hanjin Jo & Wookhyun Park & Jaehyo Kim, 2020. "Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    9. Dimitrije Marković & Jan Gläscher & Peter Bossaerts & John O’Doherty & Stefan J Kiebel, 2015. "Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-34, October.
    10. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Patricia Besson & Christophe Bourdin & Lionel Bringoux, 2011. "A Comprehensive Model of Audiovisual Perception: Both Percept and Temporal Dynamics," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
    12. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Wendy J Adams, 2016. "The Development of Audio-Visual Integration for Temporal Judgements," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-17, April.
    14. Ofri Raviv & Merav Ahissar & Yonatan Loewenstein, 2012. "How Recent History Affects Perception: The Normative Approach and Its Heuristic Approximation," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-10, October.
    15. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    16. Carrillo, Juan & Brocas, Isabelle, 2007. "Reason, Emotion and Information Processing in the Brain," CEPR Discussion Papers 6535, C.E.P.R. Discussion Papers.
    17. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2014. "On the Origins of Suboptimality in Human Probabilistic Inference," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
    18. Alice Soldà & Changxia Ke & Lionel Page & William von Hippel, 2020. "Strategically delusional," Experimental Economics, Springer;Economic Science Association, vol. 23(3), pages 604-631, September.
    19. Vassilios N Christopoulos & Paul R Schrater, 2009. "Grasping Objects with Environmentally Induced Position Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-11, October.
    20. Long Luu & Alan A Stocker, 2021. "Categorical judgments do not modify sensory representations in working memory," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-28, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0012686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.