IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0170466.html
   My bibliography  Save this article

Target Uncertainty Mediates Sensorimotor Error Correction

Author

Listed:
  • Luigi Acerbi
  • Sethu Vijayakumar
  • Daniel M Wolpert

Abstract

Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects’ scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one’s response. By suggesting that subjects’ decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated.

Suggested Citation

  • Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2017. "Target Uncertainty Mediates Sensorimotor Error Correction," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.
  • Handle: RePEc:plo:pone00:0170466
    DOI: 10.1371/journal.pone.0170466
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170466
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0170466&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0170466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Max Berniker & Martin Voss & Konrad Kording, 2010. "Learning Priors for Bayesian Computations in the Nervous System," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.
    2. Ian H Stevenson & Hugo L Fernandes & Iris Vilares & Kunlin Wei & Konrad P Körding, 2009. "Bayesian Integration and Non-Linear Feedback Control in a Full-Body Motor Task," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-9, December.
    3. Arne J Nagengast & Daniel A Braun & Daniel M Wolpert, 2010. "Risk-Sensitive Optimal Feedback Control Accounts for Sensorimotor Behavior under Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-15, July.
    4. Samuel Greenhouse & Seymour Geisser, 1959. "On methods in the analysis of profile data," Psychometrika, Springer;The Psychometric Society, vol. 24(2), pages 95-112, June.
    5. Frédéric Crevecoeur & Stephen H Scott, 2013. "Priors Engaged in Long-Latency Responses to Mechanical Perturbations Suggest a Rapid Update in State Estimation," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-14, August.
    6. Editors The, 2008. "From the Editors," Basic Income Studies, De Gruyter, vol. 3(1), pages 1-1, July.
    7. Jordi Grau-Moya & Pedro A Ortega & Daniel A Braun, 2012. "Risk-Sensitivity in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-7, September.
    8. Luigi Acerbi & Daniel M Wolpert & Sethu Vijayakumar, 2012. "Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-19, November.
    9. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2014. "On the Origins of Suboptimality in Human Probabilistic Inference," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
    10. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    2. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2014. "On the Origins of Suboptimality in Human Probabilistic Inference," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
    3. Jordi Grau-Moya & Pedro A Ortega & Daniel A Braun, 2016. "Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-21, April.
    4. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    5. Luigi Acerbi & Kalpana Dokka & Dora E Angelaki & Wei Ji Ma, 2018. "Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-38, July.
    6. Elyse H Norton & Luigi Acerbi & Wei Ji Ma & Michael S Landy, 2019. "Human online adaptation to changes in prior probability," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-26, July.
    7. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    8. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Jannes Jegminat & Maya A Jastrzębowska & Matthew V Pachai & Michael H Herzog & Jean-Pascal Pfister, 2020. "Bayesian regression explains how human participants handle parameter uncertainty," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    10. Joshua G A Cashaback & Christopher K Lao & Dimitrios J Palidis & Susan K Coltman & Heather R McGregor & Paul L Gribble, 2019. "The gradient of the reinforcement landscape influences sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-27, March.
    11. Jingwei Sun & Jian Li & Hang Zhang, 2019. "Human representation of multimodal distributions as clusters of samples," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-29, May.
    12. Jordi Grau-Moya & Pedro A Ortega & Daniel A Braun, 2012. "Risk-Sensitivity in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-7, September.
    13. William T Adler & Wei Ji Ma, 2018. "Comparing Bayesian and non-Bayesian accounts of human confidence reports," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-34, November.
    14. Luigi Acerbi & Daniel M Wolpert & Sethu Vijayakumar, 2012. "Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-19, November.
    15. Rosalie L Tung & Günter K Stahl, 2018. "The tortuous evolution of the role of culture in IB research: What we know, what we don’t know, and where we are headed," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 49(9), pages 1167-1189, December.
    16. repec:dau:papers:123456789/7346 is not listed on IDEAS
    17. Laurent, Catherine E. & Berriet-Solliec, Marielle & Kirsch, Marc & Labarthe, Pierre & Trouve, Aurelie, 2010. "Multifunctionality Of Agriculture, Public Policies And Scientific Evidences: Some Critical Issues Of Contemporary Controversies," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 4(1-2), pages 1-6.
    18. Arruda Gustavo & Lima Daniela & Teles Vladimir Kühl, 2020. "Household borrowing constraints and monetary policy in emerging economies," The B.E. Journal of Macroeconomics, De Gruyter, vol. 20(1), pages 1-21, January.
    19. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    20. Elaine E Potter & Carol S Thornber & John-David Swanson & Malcolm McFarland, 2016. "Ploidy Distribution of the Harmful Bloom Forming Macroalgae Ulva spp. in Narragansett Bay, Rhode Island, USA, Using Flow Cytometry Methods," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    21. Hsu, Dan K. & Burmeister-Lamp, Katrin & Simmons, Sharon A. & Foo, Maw-Der & Hong, Michelle C. & Pipes, Jesse D., 2019. "“I know I can, but I don't fit”: Perceived fit, self-efficacy, and entrepreneurial intention," Journal of Business Venturing, Elsevier, vol. 34(2), pages 311-326.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0170466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.