IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003715.html
   My bibliography  Save this article

Characterizing the Impact of Category Uncertainty on Human Auditory Categorization Behavior

Author

Listed:
  • Adam M Gifford
  • Yale E Cohen
  • Alan A Stocker

Abstract

Categorization is an important cognitive process. However, the correct categorization of a stimulus is often challenging because categories can have overlapping boundaries. Whereas perceptual categorization has been extensively studied in vision, the analogous phenomenon in audition has yet to be systematically explored. Here, we test whether and how human subjects learn to use category distributions and prior probabilities, as well as whether subjects employ an optimal decision strategy when making auditory-category decisions. We asked subjects to classify the frequency of a tone burst into one of two overlapping, uniform categories according to the perceived tone frequency. We systematically varied the prior probability of presenting a tone burst with a frequency originating from one versus the other category. Most subjects learned these changes in prior probabilities early in testing and used this information to influence categorization. We also measured each subject's frequency-discrimination thresholds (i.e., their sensory uncertainty levels). We tested each subject's average behavior against variations of a Bayesian model that either led to optimal or sub-optimal decision behavior (i.e. probability matching). In both predicting and fitting each subject's average behavior, we found that probability matching provided a better account of human decision behavior. The model fits confirmed that subjects were able to learn category prior probabilities and approximate forms of the category distributions. Finally, we systematically explored the potential ways that additional noise sources could influence categorization behavior. We found that an optimal decision strategy can produce probability-matching behavior if it utilized non-stationary category distributions and prior probabilities formed over a short stimulus history. Our work extends previous findings into the auditory domain and reformulates the issue of categorization in a manner that can help to interpret the results of previous research within a generative framework.Author Summary: Categorization is an important cognitive process that allows us to simplify, extract meaning from, and respond to objects in the sensory environment. However, categorization is complicated because an object can belong to multiple categories. Thus, to inform our categorical judgments, we must make use of prior information. Given the importance of categorization, we hypothesized that humans utilize optimal strategies for making categorical judgments that allow us to minimize categorization errors. We found, though, that whereas subjects used prior information (i.e., category prior probability), they were sub-optimal in their categorization behavior. This seems to be common in other perceptual and cognitive tasks as well. We then explored the bases for this sub-optimal behavior and found that it can be consistent with an optimal strategy if we assume that subjects have trial-by-trial noise in components of the judgment process. This work extends previous similar findings into the field of auditory categorization and provides a means to reinterpret previous results.

Suggested Citation

  • Adam M Gifford & Yale E Cohen & Alan A Stocker, 2014. "Characterizing the Impact of Category Uncertainty on Human Auditory Categorization Behavior," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-15, July.
  • Handle: RePEc:plo:pcbi00:1003715
    DOI: 10.1371/journal.pcbi.1003715
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003715
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003715&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elyse H Norton & Luigi Acerbi & Wei Ji Ma & Michael S Landy, 2019. "Human online adaptation to changes in prior probability," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-26, July.
    2. Richard F Murray & Khushbu Patel & Alan Yee, 2015. "Posterior Probability Matching and Human Perceptual Decision Making," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-16, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.