IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004342.html
   My bibliography  Save this article

Posterior Probability Matching and Human Perceptual Decision Making

Author

Listed:
  • Richard F Murray
  • Khushbu Patel
  • Alan Yee

Abstract

Probability matching is a classic theory of decision making that was first developed in models of cognition. Posterior probability matching, a variant in which observers match their response probabilities to the posterior probability of each response being correct, is being used increasingly often in models of perception. However, little is known about whether posterior probability matching is consistent with the vast literature on vision and hearing that has developed within signal detection theory. Here we test posterior probability matching models using two tools from detection theory. First, we examine the models’ performance in a two-pass experiment, where each block of trials is presented twice, and we measure the proportion of times that the model gives the same response twice to repeated stimuli. We show that at low performance levels, posterior probability matching models give highly inconsistent responses across repeated presentations of identical trials. We find that practised human observers are more consistent across repeated trials than these models predict, and we find some evidence that less practised observers more consistent as well. Second, we compare the performance of posterior probability matching models on a discrimination task to the performance of a theoretical ideal observer that achieves the best possible performance. We find that posterior probability matching is very inefficient at low-to-moderate performance levels, and that human observers can be more efficient than is ever possible according to posterior probability matching models. These findings support classic signal detection models, and rule out a broad class of posterior probability matching models for expert performance on perceptual tasks that range in complexity from contrast discrimination to symmetry detection. However, our findings leave open the possibility that inexperienced observers may show posterior probability matching behaviour, and our methods provide new tools for testing for such a strategy.Author Summary: Decision making is partly random: a person can make different decisions at different times based on the same information. The theory of probability matching says that one reason for this randomness is that people usually choose the response that they think is most likely to be correct, but they sometimes intentionally choose the response that they think is less likely to be correct. Probability matching is a theory that was developed to describe how people try to predict the outcome of a partly random event, e.g., whether a patient has some medical condition, given the result of a medical test that does not provide perfectly accurate information. Recently, modified probability matching theories have been used to understand perceptual decision making, e.g., judging whether a sound and a visual flash were produced by the same event or by different events. We show that probability matching predicts that peoples’ perceptual decisions on difficult tasks are highly random and make poor use of the available information. We show experimentally that expert perceptual decisions are less random and more efficient than probability matching predicts. These findings help us understand how people perform a wide range of important real-world perceptual tasks, such as evaluating medical images and detecting targets in airport screening scans.

Suggested Citation

  • Richard F Murray & Khushbu Patel & Alan Yee, 2015. "Posterior Probability Matching and Human Perceptual Decision Making," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-16, June.
  • Handle: RePEc:plo:pcbi00:1004342
    DOI: 10.1371/journal.pcbi.1004342
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004342
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004342&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David R Wozny & Ulrik R Beierholm & Ladan Shams, 2010. "Probability Matching as a Computational Strategy Used in Perception," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-7, August.
    2. Adam M Gifford & Yale E Cohen & Alan A Stocker, 2014. "Characterizing the Impact of Category Uncertainty on Human Auditory Categorization Behavior," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-15, July.
    3. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2014. "On the Origins of Suboptimality in Human Probabilistic Inference," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
    4. repec:bla:jecsur:v:14:y:2000:i:1:p:101-18 is not listed on IDEAS
    5. J. Gold & P. J. Bennett & A. B. Sekuler, 1999. "Signal but not noise changes with perceptual learning," Nature, Nature, vol. 402(6758), pages 176-178, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srishti Goel & Julian Jara-Ettinger & Desmond C. Ong & Maria Gendron, 2024. "Face and context integration in emotion inference is limited and variable across categories and individuals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Elyse H Norton & Luigi Acerbi & Wei Ji Ma & Michael S Landy, 2019. "Human online adaptation to changes in prior probability," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elyse H Norton & Luigi Acerbi & Wei Ji Ma & Michael S Landy, 2019. "Human online adaptation to changes in prior probability," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-26, July.
    2. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    3. Luigi Acerbi & Kalpana Dokka & Dora E Angelaki & Wei Ji Ma, 2018. "Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-38, July.
    4. James R H Cooke & Arjan C ter Horst & Robert J van Beers & W Pieter Medendorp, 2017. "Effect of depth information on multiple-object tracking in three dimensions: A probabilistic perspective," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-18, July.
    5. Srishti Goel & Julian Jara-Ettinger & Desmond C. Ong & Maria Gendron, 2024. "Face and context integration in emotion inference is limited and variable across categories and individuals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Dimitrije Marković & Jan Gläscher & Peter Bossaerts & John O’Doherty & Stefan J Kiebel, 2015. "Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-34, October.
    7. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Wendy J Adams, 2016. "The Development of Audio-Visual Integration for Temporal Judgements," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-17, April.
    10. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    11. Jannes Jegminat & Maya A Jastrzębowska & Matthew V Pachai & Michael H Herzog & Jean-Pascal Pfister, 2020. "Bayesian regression explains how human participants handle parameter uncertainty," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    12. Mauersberger, Felix, 2019. "Thompson Sampling: Endogenously Random Behavior in Games and Markets," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203600, Verein für Socialpolitik / German Economic Association.
    13. Elina Stengård & Ronald van den Berg, 2019. "Imperfect Bayesian inference in visual perception," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
    14. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2014. "On the Origins of Suboptimality in Human Probabilistic Inference," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
    15. Ari S. Benjamin & Ling-Qi Zhang & Cheng Qiu & Alan A. Stocker & Konrad P. Kording, 2022. "Efficient neural codes naturally emerge through gradient descent learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Jeroen Atsma & Femke Maij & Mathieu Koppen & David E Irwin & W Pieter Medendorp, 2016. "Causal Inference for Spatial Constancy across Saccades," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-20, March.
    17. Peter W Battaglia & Daniel Kersten & Paul R Schrater, 2011. "How Haptic Size Sensations Improve Distance Perception," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-13, June.
    18. Hojin Jang & Frank Tong, 2024. "Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Joshua G A Cashaback & Christopher K Lao & Dimitrios J Palidis & Susan K Coltman & Heather R McGregor & Paul L Gribble, 2019. "The gradient of the reinforcement landscape influences sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-27, March.
    20. Jonathon Sensinger & Adrian Aleman-Zapata & Kevin Englehart, 2015. "Do Cost Functions for Tracking Error Generalize across Tasks with Different Noise Levels?," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-13, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.