IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49889-4.html
   My bibliography  Save this article

Spiking attractor model of motor cortex explains modulation of neural and behavioral variability by prior target information

Author

Listed:
  • Vahid Rostami

    (University of Cologne)

  • Thomas Rost

    (University of Cologne)

  • Felix Johannes Schmitt

    (University of Cologne)

  • Sacha Jennifer Albada

    (University of Cologne
    Jülich Research Center)

  • Alexa Riehle

    (Jülich Research Center
    Centre National de la Recherche Scientifique (CNRS)—Aix-Marseille Université (AMU))

  • Martin Paul Nawrot

    (University of Cologne)

Abstract

When preparing a movement, we often rely on partial or incomplete information, which can decrement task performance. In behaving monkeys we show that the degree of cued target information is reflected in both, neural variability in motor cortex and behavioral reaction times. We study the underlying mechanisms in a spiking motor-cortical attractor model. By introducing a biologically realistic network topology where excitatory neuron clusters are locally balanced with inhibitory neuron clusters we robustly achieve metastable network activity across a wide range of network parameters. In application to the monkey task, the model performs target-specific action selection and accurately reproduces the task-epoch dependent reduction of trial-to-trial variability in vivo where the degree of reduction directly reflects the amount of processed target information, while spiking irregularity remained constant throughout the task. In the context of incomplete cue information, the increased target selection time of the model can explain increased behavioral reaction times. We conclude that context-dependent neural and behavioral variability is a signum of attractor computation in the motor cortex.

Suggested Citation

  • Vahid Rostami & Thomas Rost & Felix Johannes Schmitt & Sacha Jennifer Albada & Alexa Riehle & Martin Paul Nawrot, 2024. "Spiking attractor model of motor cortex explains modulation of neural and behavioral variability by prior target information," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49889-4
    DOI: 10.1038/s41467-024-49889-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49889-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49889-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Miconi & Jeffrey L. McKinstry & Gerald M. Edelman, 2016. "Spontaneous emergence of fast attractor dynamics in a model of developing primary visual cortex," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    2. Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
    3. Gamaleldin F. Elsayed & Antonio H. Lara & Matthew T. Kaufman & Mark M. Churchland & John P. Cunningham, 2016. "Reorganization between preparatory and movement population responses in motor cortex," Nature Communications, Nature, vol. 7(1), pages 1-15, December.
    4. Ashok Litwin-Kumar & Brent Doiron, 2014. "Formation and maintenance of neuronal assemblies through synaptic plasticity," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
    5. Mingshan Xue & Bassam V. Atallah & Massimo Scanziani, 2014. "Equalizing excitation–inhibition ratios across visual cortical neurons," Nature, Nature, vol. 511(7511), pages 596-600, July.
    6. Jonathan A Michaels & Benjamin Dann & Hansjörg Scherberger, 2016. "Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-22, November.
    7. Hidehiko K. Inagaki & Lorenzo Fontolan & Sandro Romani & Karel Svoboda, 2019. "Discrete attractor dynamics underlies persistent activity in the frontal cortex," Nature, Nature, vol. 566(7743), pages 212-217, February.
    8. Li I. Zhang & Andrew Y. Y. Tan & Christoph E. Schreiner & Michael M. Merzenich, 2003. "Topography and synaptic shaping of direction selectivity in primary auditory cortex," Nature, Nature, vol. 424(6945), pages 201-205, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David A. Sabatini & Matthew T. Kaufman, 2024. "Reach-dependent reorientation of rotational dynamics in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Tao Guo & Shasha Li & Y. Norman Zhou & Wei D. Lu & Yong Yan & Yimin A. Wu, 2024. "Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. David Pérez-González & Olga Hernández & Ellen Covey & Manuel S Malmierca, 2012. "GABAA-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    6. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    8. Eric A. Kirk & Keenan T. Hope & Samuel J. Sober & Britton A. Sauerbrei, 2024. "An output-null signature of inertial load in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Rishi Rajalingham & Aída Piccato & Mehrdad Jazayeri, 2022. "Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Nir Even-Chen & Blue Sheffer & Saurabh Vyas & Stephen I Ryu & Krishna V Shenoy, 2019. "Structure and variability of delay activity in premotor cortex," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    11. Pan Xu & Yuanlei Yue & Juntao Su & Xiaoqian Sun & Hongfei Du & Zhichao Liu & Rahul Simha & Jianhui Zhou & Chen Zeng & Hui Lu, 2022. "Pattern decorrelation in the mouse medial prefrontal cortex enables social preference and requires MeCP2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Daniel S. Kluger & Carina Forster & Omid Abbasi & Nikos Chalas & Arno Villringer & Joachim Gross, 2023. "Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Xiao-Qin Zhang & Le Xu & Xin-Yi Zhu & Zi-Hang Tang & Yi-Bei Dong & Zhi-Peng Yu & Qing Shang & Zheng-Chun Wang & Hao-Wei Shen, 2023. "D-serine reconstitutes synaptic and intrinsic inhibitory control of pyramidal neurons in a neurodevelopmental mouse model for schizophrenia," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
    16. Tianwei Wang & Yun Chen & Yiheng Zhang & He Cui, 2024. "Multiplicative joint coding in preparatory activity for reaching sequence in macaque motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
    18. Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.
    19. Federico Rocchi & Carola Canella & Shahryar Noei & Daniel Gutierrez-Barragan & Ludovico Coletta & Alberto Galbusera & Alexia Stuefer & Stefano Vassanelli & Massimo Pasqualetti & Giuliano Iurilli & Ste, 2022. "Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Akshay Markanday & Sungho Hong & Junya Inoue & Erik Schutter & Peter Thier, 2023. "Multidimensional cerebellar computations for flexible kinematic control of movements," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49889-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.