Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1004762
Download full text from publisher
References listed on IDEAS
- James Trousdale & Yu Hu & Eric Shea-Brown & Krešimir Josić, 2012. "Impact of Network Structure and Cellular Response on Spike Time Correlations," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
- Sanggyun Kim & David Putrino & Soumya Ghosh & Emery N Brown, 2011. "A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tam, H.C. & Ching, Emily S.C. & Lai, Pik-Yin, 2018. "Reconstructing networks from dynamics with correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 106-122.
- Jonathan Schiefer & Alexander Niederbühl & Volker Pernice & Carolin Lennartz & Jürgen Hennig & Pierre LeVan & Stefan Rotter, 2018. "From correlation to causation: Estimating effective connectivity from zero-lag covariances of brain signals," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-18, March.
- Matthieu Gilson & David Dahmen & Rubén Moreno-Bote & Andrea Insabato & Moritz Helias, 2020. "The covariance perceptron: A new paradigm for classification and processing of time series in recurrent neuronal networks," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-38, October.
- Gustavo Deco & Diego Vidaurre & Morten L. Kringelbach, 2021. "Revisiting the global workspace orchestrating the hierarchical organization of the human brain," Nature Human Behaviour, Nature, vol. 5(4), pages 497-511, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
- Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
- Kris V Parag & Glenn Vinnicombe, 2017. "Point process analysis of noise in early invertebrate vision," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-25, October.
- Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
- Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.
- Etesami, Jalal & Habibnia, Ali & Kiyavash, Negar, 2017. "Econometric modeling of systemic risk: going beyond pairwise comparison and allowing for nonlinearity," LSE Research Online Documents on Economics 70769, London School of Economics and Political Science, LSE Library.
- Tom Tetzlaff & Moritz Helias & Gaute T Einevoll & Markus Diesmann, 2012. "Decorrelation of Neural-Network Activity by Inhibitory Feedback," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-29, August.
- Moritz Helias & Tom Tetzlaff & Markus Diesmann, 2014. "The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-21, January.
- Antonino Casile & Rose T Faghih & Emery N Brown, 2021. "Robust point-process Granger causality analysis in presence of exogenous temporal modulations and trial-by-trial variability in spike trains," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-22, January.
- Yu, Haitao & Guo, Xinmeng & Qin, Qing & Deng, Yun & Wang, Jiang & Liu, Jing & Cao, Yibin, 2017. "Synchrony dynamics underlying effective connectivity reconstruction of neuronal circuits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 674-687.
- Stefano Recanatesi & Gabriel Koch Ocker & Michael A Buice & Eric Shea-Brown, 2019. "Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-29, July.
- Volker Pernice & Rava Azeredo da Silveira, 2018. "Interpretation of correlated neural variability from models of feed-forward and recurrent circuits," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-26, February.
- Andrea K Barreiro & Cheng Ly, 2017. "When do correlations increase with firing rates in recurrent networks?," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-30, April.
- Andrea K Barreiro & Shree Hari Gautam & Woodrow L Shew & Cheng Ly, 2017. "A theoretical framework for analyzing coupled neuronal networks: Application to the olfactory system," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-37, October.
- Stojan Jovanović & Stefan Rotter, 2016. "Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-28, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004762. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.