IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006056.html
   My bibliography  Save this article

From correlation to causation: Estimating effective connectivity from zero-lag covariances of brain signals

Author

Listed:
  • Jonathan Schiefer
  • Alexander Niederbühl
  • Volker Pernice
  • Carolin Lennartz
  • Jürgen Hennig
  • Pierre LeVan
  • Stefan Rotter

Abstract

Knowing brain connectivity is of great importance both in basic research and for clinical applications. We are proposing a method to infer directed connectivity from zero-lag covariances of neuronal activity recorded at multiple sites. This allows us to identify causal relations that are reflected in neuronal population activity. To derive our strategy, we assume a generic linear model of interacting continuous variables, the components of which represent the activity of local neuronal populations. The suggested method for inferring connectivity from recorded signals exploits the fact that the covariance matrix derived from the observed activity contains information about the existence, the direction and the sign of connections. Assuming a sparsely coupled network, we disambiguate the underlying causal structure via L1-minimization, which is known to prefer sparse solutions. In general, this method is suited to infer effective connectivity from resting state data of various types. We show that our method is applicable over a broad range of structural parameters regarding network size and connection probability of the network. We also explored parameters affecting its activity dynamics, like the eigenvalue spectrum. Also, based on the simulation of suitable Ornstein-Uhlenbeck processes to model BOLD dynamics, we show that with our method it is possible to estimate directed connectivity from zero-lag covariances derived from such signals. In this study, we consider measurement noise and unobserved nodes as additional confounding factors. Furthermore, we investigate the amount of data required for a reliable estimate. Additionally, we apply the proposed method on full-brain resting-state fast fMRI datasets. The resulting network exhibits a tendency for close-by areas being connected as well as inter-hemispheric connections between corresponding areas. In addition, we found that a surprisingly large fraction of more than one third of all identified connections were of inhibitory nature.Author summary: Changes in brain connectivity are considered an important biomarker for certain brain diseases. This directly raises the question of accessibility of connectivity from measured brain signals. Here we show how directed effective connectivity can be inferred from continuous brain signals, like fMRI. The main idea is to extract the connectivity from the inverse zero-lag covariance matrix of the measured signals. This is done using L1-minimization via gradient descent algorithm on the manifold of unitary matrices. This ensures that the resulting network always fits the same covariance structure as the measured data, assuming a canonical linear model. Applying the estimation method on noise-free covariance matrices shows that the method works nicely on sparsely coupled networks with more than 40 nodes, provided network interaction is strong enough. Applying the estimation on simulated Ornstein-Uhlenbeck processes supposed to model BOLD signals demonstrates robustness against observation noise and unobserved nodes. In general, the proposed method can be applied to time-resolved covariance matrices in the frequency domain (cross-spectral densities), leading to frequency-resolved networks. We are able to demonstrate that our method leads to reliable results, if the sampled signals are long enough.

Suggested Citation

  • Jonathan Schiefer & Alexander Niederbühl & Volker Pernice & Carolin Lennartz & Jürgen Hennig & Pierre LeVan & Stefan Rotter, 2018. "From correlation to causation: Estimating effective connectivity from zero-lag covariances of brain signals," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-18, March.
  • Handle: RePEc:plo:pcbi00:1006056
    DOI: 10.1371/journal.pcbi.1006056
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006056
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006056&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Volker Pernice & Benjamin Staude & Stefano Cardanobile & Stefan Rotter, 2011. "How Structure Determines Correlations in Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    2. Marijke Welvaert & Yves Rosseel, 2014. "A Review of fMRI Simulation Studies," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    3. Matthieu Gilson & Ruben Moreno-Bote & Adrián Ponce-Alvarez & Petra Ritter & Gustavo Deco, 2016. "Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-30, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tam, H.C. & Ching, Emily S.C. & Lai, Pik-Yin, 2018. "Reconstructing networks from dynamics with correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 106-122.
    2. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    3. Garikoitz Lerma-Usabiaga & Noah Benson & Jonathan Winawer & Brian A Wandell, 2020. "A validation framework for neuroimaging software: The case of population receptive fields," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-18, June.
    4. Richard Naud & Wulfram Gerstner, 2012. "Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-14, October.
    5. Gustavo Deco & Diego Vidaurre & Morten L. Kringelbach, 2021. "Revisiting the global workspace orchestrating the hierarchical organization of the human brain," Nature Human Behaviour, Nature, vol. 5(4), pages 497-511, April.
    6. Chevallier, Julien & Ost, Guilherme, 2020. "Fluctuations for spatially extended Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5510-5542.
    7. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    8. Means, Shawn & Laing, Carlo R., 2022. "Explosive behaviour in networks of Winfree oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Matthieu Gilson & David Dahmen & Rubén Moreno-Bote & Andrea Insabato & Moritz Helias, 2020. "The covariance perceptron: A new paradigm for classification and processing of time series in recurrent neuronal networks," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-38, October.
    10. Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
    11. Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.
    12. Hualou Liang & Hongbin Wang, 2017. "Structure-Function Network Mapping and Its Assessment via Persistent Homology," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-19, January.
    13. Pfaffelhuber, P. & Rotter, S. & Stiefel, J., 2022. "Mean-field limits for non-linear Hawkes processes with excitation and inhibition," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 57-78.
    14. Tom Tetzlaff & Moritz Helias & Gaute T Einevoll & Markus Diesmann, 2012. "Decorrelation of Neural-Network Activity by Inhibitory Feedback," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-29, August.
    15. James Trousdale & Yu Hu & Eric Shea-Brown & Krešimir Josić, 2012. "Impact of Network Structure and Cellular Response on Spike Time Correlations," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
    16. Moritz Helias & Tom Tetzlaff & Markus Diesmann, 2014. "The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-21, January.
    17. Saikou Y. Diallo & Ross J. Gore & Jose J. Padilla & Christopher J. Lynch, 2015. "An overview of modeling and simulation using content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 977-1002, June.
    18. Stefano Recanatesi & Gabriel Koch Ocker & Michael A Buice & Eric Shea-Brown, 2019. "Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-29, July.
    19. Volker Pernice & Rava Azeredo da Silveira, 2018. "Interpretation of correlated neural variability from models of feed-forward and recurrent circuits," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-26, February.
    20. Andrea K Barreiro & Cheng Ly, 2017. "When do correlations increase with firing rates in recurrent networks?," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-30, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.