IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001110.html
   My bibliography  Save this article

A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity

Author

Listed:
  • Sanggyun Kim
  • David Putrino
  • Soumya Ghosh
  • Emery N Brown

Abstract

The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron's spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI) of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.Author Summary: Recent advances in multiple-electrode recording have made it possible to record the activities of multiple neurons simultaneously. This provides an opportunity to study how groups of neurons form functional ensembles as different brain areas perform their various functions. However, most of the methods that attempt to identify associations between neurons provide little insight into the directional nature of the interactions that they detect. Recently, Granger causality has proven to be an efficient method to infer causal relationships between sets of continuous-valued data, but cannot be directly applied to point process data such as neural spike trains. Here, we propose a novel and successful attempt to expand the application of Granger causality to point process data. The proposed method performed well with simulated data, and was then applied to real experimental data recorded from sets of simultaneously recorded neurons from the primary motor cortex. The results of the real data analysis suggest that the proposed method has the potential to provide unique neurophysiological insights about network properties in the cortex that have not been possible with other contemporary methods of functional interaction detection.

Suggested Citation

  • Sanggyun Kim & David Putrino & Soumya Ghosh & Emery N Brown, 2011. "A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
  • Handle: RePEc:plo:pcbi00:1001110
    DOI: 10.1371/journal.pcbi.1001110
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001110
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001110&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Haitao & Guo, Xinmeng & Qin, Qing & Deng, Yun & Wang, Jiang & Liu, Jing & Cao, Yibin, 2017. "Synchrony dynamics underlying effective connectivity reconstruction of neuronal circuits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 674-687.
    2. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    3. Kris V Parag & Glenn Vinnicombe, 2017. "Point process analysis of noise in early invertebrate vision," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-25, October.
    4. Antonino Casile & Rose T Faghih & Emery N Brown, 2021. "Robust point-process Granger causality analysis in presence of exogenous temporal modulations and trial-by-trial variability in spike trains," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-22, January.
    5. Etesami, Jalal & Habibnia, Ali & Kiyavash, Negar, 2017. "Econometric modeling of systemic risk: going beyond pairwise comparison and allowing for nonlinearity," LSE Research Online Documents on Economics 70769, London School of Economics and Political Science, LSE Library.
    6. Matthieu Gilson & Ruben Moreno-Bote & Adrián Ponce-Alvarez & Petra Ritter & Gustavo Deco, 2016. "Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-30, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.