IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004607.html
   My bibliography  Save this article

Inferring the Forces Controlling Metaphase Kinetochore Oscillations by Reverse Engineering System Dynamics

Author

Listed:
  • Jonathan W Armond
  • Edward F Harry
  • Andrew D McAinsh
  • Nigel J Burroughs

Abstract

Kinetochores are multi-protein complexes that mediate the physical coupling of sister chromatids to spindle microtubule bundles (called kinetochore (K)-fibres) from respective poles. These kinetochore-attached K-fibres generate pushing and pulling forces, which combine with polar ejection forces (PEF) and elastic inter-sister chromatin to govern chromosome movements. Classic experiments in meiotic cells using calibrated micro-needles measured an approximate stall force for a chromosome, but methods that allow the systematic determination of forces acting on a kinetochore in living cells are lacking. Here we report the development of mathematical models that can be fitted (reverse engineered) to high-resolution kinetochore tracking data, thereby estimating the model parameters and allowing us to indirectly compute the (relative) force components (K-fibre, spring force and PEF) acting on individual sister kinetochores in vivo. We applied our methodology to thousands of human kinetochore pair trajectories and report distinct signatures in temporal force profiles during directional switches. We found the K-fibre force to be the dominant force throughout oscillations, and the centromeric spring the smallest although it has the strongest directional switching signature. There is also structure throughout the metaphase plate, with a steeper PEF potential well towards the periphery and a concomitant reduction in plate thickness and oscillation amplitude. This data driven reverse engineering approach is sufficiently flexible to allow fitting of more complex mechanistic models; mathematical models of kinetochore dynamics can therefore be thoroughly tested on experimental data for the first time. Future work will now be able to map out how individual proteins contribute to kinetochore-based force generation and sensing.Author Summary: To achieve proper cell division, newly duplicated chromosomes must be segregated into daughter cells with high fidelity. This occurs in mitosis where during the crucial metaphase stage chromosomes are aligned on an imaginary plate, called the metaphase plate. Chromosomes are attached to a structural scaffold—the mitotic spindle, which is composed of dynamic fibres called microtubules—by protein machines called kinetochores. Observation of kinetochores during metaphase reveals they undergo a series of forward and backward movements. The mechanical system generating this oscillatory motion is not well understood. By tracking kinetochores in live cell 3D confocal microscopy and reverse engineering their trajectories we decompose the forces acting on kinetochores into the three main force generating components. Kinetochore dynamics are dominated by K-fibre forces, although changes in the minor spring force over time suggests an important role in controlling directional switching. In addition, we show that the strength of forces can vary both spatially within cells throughout the plate and between cells.

Suggested Citation

  • Jonathan W Armond & Edward F Harry & Andrew D McAinsh & Nigel J Burroughs, 2015. "Inferring the Forces Controlling Metaphase Kinetochore Oscillations by Reverse Engineering System Dynamics," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-26, November.
  • Handle: RePEc:plo:pcbi00:1004607
    DOI: 10.1371/journal.pcbi.1004607
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004607
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004607&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Golightly & D. J. Wilkinson, 2005. "Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation," Biometrics, The International Biometric Society, vol. 61(3), pages 781-788, September.
    2. Ming‐Hui Chen, 2005. "Computing marginal likelihoods from a single MCMC output," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(1), pages 16-29, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cédric Castrogiovanni & Alessio V. Inchingolo & Jonathan U. Harrison & Damian Dudka & Onur Sen & Nigel J. Burroughs & Andrew D. McAinsh & Patrick Meraldi, 2022. "Evidence for a HURP/EB free mixed-nucleotide zone in kinetochore-microtubules," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golightly Andrew & Wilkinson Darren J., 2015. "Bayesian inference for Markov jump processes with informative observations," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 169-188, April.
    2. Eugenia Koblents & Inés P. Mariño & Joaquín Míguez, 2019. "Bayesian Computation Methods for Inference in Stochastic Kinetic Models," Complexity, Hindawi, vol. 2019, pages 1-15, January.
    3. Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
    4. Vilda Purutçuoğlu, 2013. "Inference of the stochastic MAPK pathway by modified diffusion bridge method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 415-429, March.
    5. Tian, Guo-Liang & Ng, Kai Wang & Li, Kai-Can & Tan, Ming, 2009. "Non-iterative sampling-based Bayesian methods for identifying changepoints in the sequence of cases of Haemolytic uraemic syndrome," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3314-3323, July.
    6. Colin S. Gillespie & Andrew Golightly, 2010. "Bayesian inference for generalized stochastic population growth models with application to aphids," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 341-357, March.
    7. Libo Sun & Chihoon Lee & Jennifer A. Hoeting, 2019. "A penalized simulated maximum likelihood method to estimate parameters for SDEs with measurement error," Computational Statistics, Springer, vol. 34(2), pages 847-863, June.
    8. Mogens Bladt & Samuel Finch & Michael Sørensen, 2016. "Simulation of multivariate diffusion bridges," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 343-369, March.
    9. Prasenjit Ghosh & Debdeep Pati & Anirban Bhattacharya, 2020. "Posterior Contraction Rates for Stochastic Block Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 448-476, August.
    10. Paul Fearnhead & Vasilieos Giagos & Chris Sherlock, 2014. "Inference for reaction networks using the linear noise approximation," Biometrics, The International Biometric Society, vol. 70(2), pages 457-466, June.
    11. Sun, Libo & Lee, Chihoon & Hoeting, Jennifer A., 2015. "A penalized simulated maximum likelihood approach in parameter estimation for stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 54-67.
    12. Perrakis, Konstantinos & Ntzoufras, Ioannis & Tsionas, Efthymios G., 2014. "On the use of marginal posteriors in marginal likelihood estimation via importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 54-69.
    13. Chris Sherlock, 2021. "Direct statistical inference for finite Markov jump processes via the matrix exponential," Computational Statistics, Springer, vol. 36(4), pages 2863-2887, December.
    14. Ehlers, Ricardo S., 2012. "Computational tools for comparing asymmetric GARCH models via Bayes factors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 858-867.
    15. Kim, Hea-Jung, 2018. "Bayesian hierarchical robust factor analysis models for partially observed sample-selection data," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 65-82.
    16. Theodore Simos & Mike Tsionas, 2018. "Bayesian inference of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme," Computational Statistics, Springer, vol. 33(4), pages 1687-1713, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.