IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7160934.html
   My bibliography  Save this article

Bayesian Computation Methods for Inference in Stochastic Kinetic Models

Author

Listed:
  • Eugenia Koblents
  • Inés P. Mariño
  • Joaquín Míguez

Abstract

In this paper we investigate Monte Carlo methods for the approximation of the posterior probability distributions in stochastic kinetic models (SKMs). SKMs are multivariate Markov jump processes that model the interactions among species in biological systems according to a set of usually unknown parameters. The tracking of the species populations together with the estimation of the interaction parameters is a Bayesian inference problem for which Markov chain Monte Carlo (MCMC) methods have been a typical computational tool. Specifically, the particle MCMC (pMCMC) method has been shown to be effective, while computationally demanding method applicable to this problem. Recently, it has been shown that an alternative approach to Bayesian computation, namely, the class of adaptive importance samplers, may be more efficient than classical MCMC-like schemes, at least for certain applications. For example, the nonlinear population Monte Carlo (NPMC) algorithm has yielded promising results with a low dimensional SKM (the classical predator-prey model). In this paper we explore the application of both pMCMC and NPMC to analyze complex autoregulatory feedback networks modelled by SKMs. We demonstrate numerically how the populations of the relevant species in the network can be tracked and their interaction rates estimated, even in scenarios with partial observations. NPMC schemes attain an appealing trade-off between accuracy and computational cost that can make them advantageous in many practical applications.

Suggested Citation

  • Eugenia Koblents & Inés P. Mariño & Joaquín Míguez, 2019. "Bayesian Computation Methods for Inference in Stochastic Kinetic Models," Complexity, Hindawi, vol. 2019, pages 1-15, January.
  • Handle: RePEc:hin:complx:7160934
    DOI: 10.1155/2019/7160934
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/7160934.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/7160934.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7160934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/6072 is not listed on IDEAS
    2. A. Golightly & D. J. Wilkinson, 2005. "Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation," Biometrics, The International Biometric Society, vol. 61(3), pages 781-788, September.
    3. Koblents, Eugenia & Míguez, Joaquín & Rodríguez, Marco A. & Schmidt, Alexandra M., 2016. "A nonlinear population Monte Carlo scheme for the Bayesian estimation of parameters of α-stable distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 57-74.
    4. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    5. Drovandi, Christopher C. & Moores, Matthew T. & Boys, Richard J., 2018. "Accelerating pseudo-marginal MCMC using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 118(C), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golightly Andrew & Wilkinson Darren J., 2015. "Bayesian inference for Markov jump processes with informative observations," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 169-188, April.
    2. Sun, Libo & Lee, Chihoon & Hoeting, Jennifer A., 2015. "A penalized simulated maximum likelihood approach in parameter estimation for stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 54-67.
    3. Chris Sherlock, 2021. "Direct statistical inference for finite Markov jump processes via the matrix exponential," Computational Statistics, Springer, vol. 36(4), pages 2863-2887, December.
    4. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    5. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
    6. Arellano, Manuel & Blundell, Richard & Bonhomme, Stéphane & Light, Jack, 2024. "Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence," Journal of Econometrics, Elsevier, vol. 240(2).
    7. Diana Giurghita & Dirk Husmeier, 2018. "Statistical modelling of cell movement," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 265-280, August.
    8. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate stochastic volatility with co-heteroscedasticity," CAMA Working Papers 2018-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    9. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    10. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    11. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    12. Andrew Hoegh & Frank T. Manen & Mark Haroldson, 2021. "Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 560-579, December.
    13. Kouritzin, Michael A., 2017. "Residual and stratified branching particle filters," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 145-165.
    14. Lux, Thomas, 2020. "Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo," Economics Working Papers 2020-01, Christian-Albrechts-University of Kiel, Department of Economics.
    15. Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
    16. Aruoba, S. Borağan & Bocola, Luigi & Schorfheide, Frank, 2017. "Assessing DSGE model nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 34-54.
    17. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    18. Denis Koshelev & Alexey Ponomarenko & Sergei Seleznev, 2023. "Amortized neural networks for agent-based model forecasting," Papers 2308.05753, arXiv.org.
    19. repec:bny:wpaper:0070 is not listed on IDEAS
    20. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    21. Nguyen Ba Trung, 2024. "Exchange rate uncertainty and economic fluctuations in typical emerging economies," HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ECONOMICS AND BUSINESS ADMINISTRATION, HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE, HO CHI MINH CITY OPEN UNIVERSITY, vol. 14(1), pages 88-103.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7160934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.