IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v70y2014i2p457-466.html
   My bibliography  Save this article

Inference for reaction networks using the linear noise approximation

Author

Listed:
  • Paul Fearnhead
  • Vasilieos Giagos
  • Chris Sherlock

Abstract

No abstract is available for this item.

Suggested Citation

  • Paul Fearnhead & Vasilieos Giagos & Chris Sherlock, 2014. "Inference for reaction networks using the linear noise approximation," Biometrics, The International Biometric Society, vol. 70(2), pages 457-466, June.
  • Handle: RePEc:bla:biomet:v:70:y:2014:i:2:p:457-466
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12152
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    2. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    3. Vanja Dukic & Hedibert F. Lopes & Nicholas G. Polson, 2012. "Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1410-1426, December.
    4. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    5. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    6. Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
    7. A. Golightly & D. J. Wilkinson, 2005. "Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation," Biometrics, The International Biometric Society, vol. 61(3), pages 781-788, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chris Sherlock, 2021. "Direct statistical inference for finite Markov jump processes via the matrix exponential," Computational Statistics, Springer, vol. 36(4), pages 2863-2887, December.
    2. Jonathan Fintzi & Jon Wakefield & Vladimir N. Minin, 2022. "A linear noise approximation for stochastic epidemic models fit to partially observed incidence counts," Biometrics, The International Biometric Society, vol. 78(4), pages 1530-1541, December.
    3. Wiqvist, Samuel & Golightly, Andrew & McLean, Ashleigh T. & Picchini, Umberto, 2021. "Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    4. Golightly Andrew & Wilkinson Darren J., 2015. "Bayesian inference for Markov jump processes with informative observations," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 169-188, April.
    5. Wadkin, Laura E. & Holden, John & Ettelaie, Rammile & Holmes, Melvin J. & Smith, James & Golightly, Andrew & Parker, Nick G. & Baggaley, Andrew W., 2024. "Estimating the reproduction number, R0, from individual-based models of tree disease spread," Ecological Modelling, Elsevier, vol. 489(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mogens Bladt & Samuel Finch & Michael Sørensen, 2016. "Simulation of multivariate diffusion bridges," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 343-369, March.
    2. Zhao-Hua Lu & Sy-Miin Chow & Nilam Ram & Pamela M. Cole, 2019. "Zero-Inflated Regime-Switching Stochastic Differential Equation Models for Highly Unbalanced Multivariate, Multi-Subject Time-Series Data," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 611-645, June.
    3. Beskos, Alexandros & Kalogeropoulos, Konstantinos & Pazos, Erik, 2013. "Advanced MCMC methods for sampling on diffusion pathspace," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1415-1453.
    4. Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
    5. Nina Munkholt Jakobsen & Michael Sørensen, 2015. "Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval," CREATES Research Papers 2015-33, Department of Economics and Business Economics, Aarhus University.
    6. Libo Sun & Chihoon Lee & Jennifer A. Hoeting, 2019. "A penalized simulated maximum likelihood method to estimate parameters for SDEs with measurement error," Computational Statistics, Springer, vol. 34(2), pages 847-863, June.
    7. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    8. Theodore Simos & Mike Tsionas, 2018. "Bayesian inference of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme," Computational Statistics, Springer, vol. 33(4), pages 1687-1713, December.
    9. Bin Zhu & Peter X.-K. Song & Jeremy M.G. Taylor, 2011. "Stochastic Functional Data Analysis: A Diffusion Model-Based Approach," Biometrics, The International Biometric Society, vol. 67(4), pages 1295-1304, December.
    10. S. C. Kou & Benjamin P. Olding & Martin Lysy & Jun S. Liu, 2012. "A Multiresolution Method for Parameter Estimation of Diffusion Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1558-1574, December.
    11. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    12. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    13. Kevin W. Lu & Phillip J. Paine & Simon P. Preston & Andrew T. A. Wood, 2022. "Approximate maximum likelihood estimation for one‐dimensional diffusions observed on a fine grid," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1085-1114, September.
    14. Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
    15. Peavoy, Daniel & Franzke, Christian L.E. & Roberts, Gareth O., 2015. "Systematic physics constrained parameter estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 182-199.
    16. Golightly Andrew & Wilkinson Darren J., 2015. "Bayesian inference for Markov jump processes with informative observations," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 169-188, April.
    17. Kyoung-Kuk Kim & Sojung Kim, 2016. "Simulation of Tempered Stable Lévy Bridges and Its Applications," Operations Research, INFORMS, vol. 64(2), pages 495-509, April.
    18. Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Particle filters for partially observed diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 755-777, September.
    19. Sun, Libo & Lee, Chihoon & Hoeting, Jennifer A., 2015. "A penalized simulated maximum likelihood approach in parameter estimation for stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 54-67.
    20. Kalogeropoulos, Konstantinos & Roberts, Gareth O. & Dellaportas, Petros, 2007. "Inference for stochastic volatility model using time change transformations," MPRA Paper 5697, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:70:y:2014:i:2:p:457-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.