IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v59y2005i1p16-29.html
   My bibliography  Save this article

Computing marginal likelihoods from a single MCMC output

Author

Listed:
  • Ming‐Hui Chen

Abstract

In this article, we propose new Monte Carlo methods for computing a single marginal likelihood or several marginal likelihoods for the purpose of Bayesian model comparisons. The methods are motivated by Bayesian variable selection, in which the marginal likelihoods for all subset variable models are required to compute. The proposed estimates use only a single Markov chain Monte Carlo (MCMC) output from the joint posterior distribution and it does not require the specific structure or the form of the MCMC sampling algorithm that is used to generate the MCMC sample to be known. The theoretical properties of the proposed method are examined in detail. The applicability and usefulness of the proposed method are demonstrated via ordinal data probit regression models. A real dataset involving ordinal outcomes is used to further illustrate the proposed methodology.

Suggested Citation

  • Ming‐Hui Chen, 2005. "Computing marginal likelihoods from a single MCMC output," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(1), pages 16-29, February.
  • Handle: RePEc:bla:stanee:v:59:y:2005:i:1:p:16-29
    DOI: 10.1111/j.1467-9574.2005.00276.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9574.2005.00276.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9574.2005.00276.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perrakis, Konstantinos & Ntzoufras, Ioannis & Tsionas, Efthymios G., 2014. "On the use of marginal posteriors in marginal likelihood estimation via importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 54-69.
    2. Jonathan W Armond & Edward F Harry & Andrew D McAinsh & Nigel J Burroughs, 2015. "Inferring the Forces Controlling Metaphase Kinetochore Oscillations by Reverse Engineering System Dynamics," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-26, November.
    3. Tian, Guo-Liang & Ng, Kai Wang & Li, Kai-Can & Tan, Ming, 2009. "Non-iterative sampling-based Bayesian methods for identifying changepoints in the sequence of cases of Haemolytic uraemic syndrome," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3314-3323, July.
    4. Kim, Hea-Jung, 2018. "Bayesian hierarchical robust factor analysis models for partially observed sample-selection data," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 65-82.
    5. Ehlers, Ricardo S., 2012. "Computational tools for comparing asymmetric GARCH models via Bayes factors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 858-867.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:59:y:2005:i:1:p:16-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.