Structure and function of H+/K+ pump mutants reveal Na+/K+ pump mechanisms
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-32793-0
Download full text from publisher
References listed on IDEAS
- Kazuhiro Abe & Kenta Yamamoto & Katsumasa Irie & Tomohiro Nishizawa & Atsunori Oshima, 2021. "Gastric proton pump with two occluded K+ engineered with sodium pump-mimetic mutations," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Takehiro Shinoda & Haruo Ogawa & Flemming Cornelius & Chikashi Toyoshima, 2009. "Crystal structure of the sodium–potassium pump at 2.4 Å resolution," Nature, Nature, vol. 459(7245), pages 446-450, May.
- J. Preben Morth & Bjørn P. Pedersen & Mads S. Toustrup-Jensen & Thomas L.-M. Sørensen & Janne Petersen & Jens Peter Andersen & Bente Vilsen & Poul Nissen, 2007. "Crystal structure of the sodium–potassium pump," Nature, Nature, vol. 450(7172), pages 1043-1049, December.
- Abdul S. Ethayathulla & Mohammad S. Yousef & Anowarul Amin & Gérard Leblanc & H. Ronald Kaback & Lan Guan, 2014. "Structure-based mechanism for Na+/melibiose symport by MelB," Nature Communications, Nature, vol. 5(1), pages 1-11, May.
- Chikashi Toyoshima & Hiromi Nomura, 2002. "Structural changes in the calcium pump accompanying the dissociation of calcium," Nature, Nature, vol. 418(6898), pages 605-611, August.
- Harini Krishnamurthy & Chayne L. Piscitelli & Eric Gouaux, 2009. "Unlocking the molecular secrets of sodium-coupled transporters," Nature, Nature, vol. 459(7245), pages 347-355, May.
- Kazuhiro Abe & Katsumasa Irie & Hanayo Nakanishi & Hiroshi Suzuki & Yoshinori Fujiyoshi, 2018. "Crystal structures of the gastric proton pump," Nature, Nature, vol. 556(7700), pages 214-218, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yongqiang Li & Siwei Yang & Wancheng Bao & Quan Tao & Xiuyun Jiang & Jipeng Li & Peng He & Gang Wang & Kai Qi & Hui Dong & Guqiao Ding & Xiaoming Xie, 2024. "Accelerated proton dissociation in an excited state induces superacidic microenvironments around graphene quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Phong T. Nguyen & Christine Deisl & Michael Fine & Trevor S. Tippetts & Emiko Uchikawa & Xiao-chen Bai & Beth Levine, 2022. "Structural basis for gating mechanism of the human sodium-potassium pump," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Yingying Guo & Yuanyuan Zhang & Renhong Yan & Bangdong Huang & Fangfei Ye & Liushu Wu & Ximin Chi & Yi shi & Qiang Zhou, 2022. "Cryo-EM structures of recombinant human sodium-potassium pump determined in three different states," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Hyun Deok Song & Fangqiang Zhu, 2015. "Conformational Changes in Two Inter-Helical Loops of Mhp1 Membrane Transporter," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-19, July.
- Takuto Fujii & Shushi Nagamori & Pattama Wiriyasermkul & Shizhou Zheng & Asaka Yago & Takahiro Shimizu & Yoshiaki Tabuchi & Tomoyuki Okumura & Tsutomu Fujii & Hiroshi Takeshima & Hideki Sakai, 2023. "Parkinson’s disease-associated ATP13A2/PARK9 functions as a lysosomal H+,K+-ATPase," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Zongxin Guo & Fredrik Orädd & Viktoria Bågenholm & Christina Grønberg & Jian Feng Ma & Peter Ott & Yong Wang & Magnus Andersson & Per Amstrup Pedersen & Kaituo Wang & Pontus Gourdon, 2024. "Diverse roles of the metal binding domains and transport mechanism of copper transporting P-type ATPases," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Yongchan Lee & Pattama Wiriyasermkul & Pornparn Kongpracha & Satomi Moriyama & Deryck J. Mills & Werner Kühlbrandt & Shushi Nagamori, 2022. "Ca2+-mediated higher-order assembly of heterodimers in amino acid transport system b0,+ biogenesis and cystinuria," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
- Patrick Roth & Jean-Marc Jeckelmann & Inken Fender & Zöhre Ucurum & Thomas Lemmin & Dimitrios Fotiadis, 2024. "Structure and mechanism of a phosphotransferase system glucose transporter," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32793-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.