IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0166908.html
   My bibliography  Save this article

How Simple Hypothetical-Choice Experiments Can Be Utilized to Learn Humans’ Navigational Escape Decisions in Emergencies

Author

Listed:
  • Milad Haghani
  • Majid Sarvi
  • Zahra Shahhoseini
  • Maik Boltes

Abstract

How humans resolve non-trivial tradeoffs in their navigational choices between the social interactions (e.g., the presence and movements of others) and the physical factors (e.g., spatial distances, route visibility) when escaping from threats in crowded confined spaces? The answer to this question has major implications for the planning of evacuations and the safety of mass gatherings as well as the design of built environments. Due to the challenges of collecting behavioral data from naturally-occurring evacuation settings, laboratory-based virtual-evacuation experiments have been practiced in a number of studies. This class of experiments faces the traditional question of contextual bias and generalizability: How reliably can we infer humans’ behavior from decisions made in hypothetical settings? Here, we address these questions by making a novel link between two different forms of empirical observations. We conduct hypothetical emergency exit-choice experiments framed as simple pictures, and then mimic those hypothetical scenarios in more realistic fashions through staging mock evacuation trials with actual crowds. Econometric choice models are estimated based on the observations made in both experimental contexts. The models are contrasted with each other from a number of perspectives including their predictions as well as the sign, magnitude, statistical significance, person-to-person variations (reflecting individuals’ perception/preference differences) and the scale (reflecting context-dependent decision randomness) of their inferred parameters. Results reveal a surprising degree of resemblance between the models derived from the two contexts. Most strikingly, they produce fairly similar prediction probabilities whose differences average less than 10%. There is also unexpected consensus between the inferences derived from both experimental sources on many aspects of people’s behavior notably in terms of the perception of social interactions. Results show that we could have elicited peoples’ escape strategies with fair precision without observing them in action (i.e., simply by using only hypothetical-choice data as an inexpensive, practical and non-invasive experimental technique in this context). As a broader application, this offers promising evidence as to the potential applicability of the hypothetical-decision experiments to other decision contexts (at least for non-financial decisions) when field or real-world data is prohibitively unavailable. As a practical application, the behavioral insights inferred from our observations (reflected in the estimated parameters) can improve how accurately we predict the movement patterns of human crowds in emergency scenarios arisen in complex spaces. Fully-generic-in-parameters, our proposed models can even be directly introduced to a broad range of crowd simulation software to replicate navigation decision making of evacuees.

Suggested Citation

  • Milad Haghani & Majid Sarvi & Zahra Shahhoseini & Maik Boltes, 2016. "How Simple Hypothetical-Choice Experiments Can Be Utilized to Learn Humans’ Navigational Escape Decisions in Emergencies," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-24, November.
  • Handle: RePEc:plo:pone00:0166908
    DOI: 10.1371/journal.pone.0166908
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166908
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0166908&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0166908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brandy Schmidt & A. David Redish, 2013. "Navigation with a cognitive map," Nature, Nature, vol. 497(7447), pages 42-43, May.
    2. Armin Falk & James J. Heckman, 2009. "Lab Experiments are a Major Source of Knowledge in the Social Sciences," Working Papers 200935, Geary Institute, University College Dublin.
    3. Semra Ozdemir, 2015. "Improving the Validity of Stated-Preference Data in Health Research: The Potential of the Time-to-Think Approach," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 8(3), pages 247-255, June.
    4. Hensher, David A., 2010. "Hypothetical bias, choice experiments and willingness to pay," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 735-752, July.
    5. Glenn W. Harrison & John A. List, 2004. "Field Experiments," Journal of Economic Literature, American Economic Association, vol. 42(4), pages 1009-1055, December.
    6. Antonini, Gianluca & Bierlaire, Michel & Weber, Mats, 2006. "Discrete choice models of pedestrian walking behavior," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 667-687, September.
    7. Hughes, R.L., 2000. "The flow of large crowds of pedestrians," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 53(4), pages 367-370.
    8. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    9. Steven D. Levitt & John A. List, 2007. "Viewpoint: On the generalizability of lab behaviour to the field," Canadian Journal of Economics, Canadian Economics Association, vol. 40(2), pages 347-370, May.
    10. Liu, Shaobo & Yang, Lizhong & Fang, Tingyong & Li, Jian, 2009. "Evacuation from a classroom considering the occupant density around exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1921-1928.
    11. Bliemer, Michiel C.J. & Rose, John M. & Hensher, David A., 2009. "Efficient stated choice experiments for estimating nested logit models," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 19-35, January.
    12. John Rose & Michiel Bliemer, 2013. "Sample size requirements for stated choice experiments," Transportation, Springer, vol. 40(5), pages 1021-1041, September.
    13. Nikolai W F Bode & Stefan Holl & Wolfgang Mehner & Armin Seyfried, 2015. "Disentangling the Impact of Social Groups on Response Times and Movement Dynamics in Evacuations," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    14. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    15. Robin, Th. & Antonini, G. & Bierlaire, M. & Cruz, J., 2009. "Specification, estimation and validation of a pedestrian walking behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 36-56, January.
    16. Armin Seyfried & Oliver Passon & Bernhard Steffen & Maik Boltes & Tobias Rupprecht & Wolfram Klingsch, 2009. "New Insights into Pedestrian Flow Through Bottlenecks," Transportation Science, INFORMS, vol. 43(3), pages 395-406, August.
    17. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    18. David Hensher & William Greene, 2010. "Non-attendance and dual processing of common-metric attributes in choice analysis: a latent class specification," Empirical Economics, Springer, vol. 39(2), pages 413-426, October.
    19. David A. Hensher, 2006. "How do respondents process stated choice experiments? Attribute consideration under varying information load," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 861-878.
    20. David J. Low, 2000. "Following the crowd," Nature, Nature, vol. 407(6803), pages 465-466, September.
    21. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2015. "Accommodating taste heterogeneity and desired substitution pattern in exit choices of pedestrian crowd evacuees using a mixed nested logit model," Journal of choice modelling, Elsevier, vol. 16(C), pages 58-68.
    22. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    23. Fang, Zhiming & Song, Weiguo & Zhang, Jun & Wu, Hao, 2010. "Experiment and modeling of exit-selecting behaviors during a building evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 815-824.
    24. Train, Kenneth & Wilson, Wesley W., 2008. "Estimation on stated-preference experiments constructed from revealed-preference choices," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 191-203, March.
    25. Steven D. Levitt & John A. List, 2007. "What Do Laboratory Experiments Measuring Social Preferences Reveal About the Real World?," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 153-174, Spring.
    26. Lin, Peng & Ma, Jian & Liu, Tianyang & Ran, Tong & Si, Youliang & Li, Tao, 2016. "An experimental study of the “faster-is-slower” effect using mice under panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 157-166.
    27. Serge P. Hoogendoorn & W. Daamen, 2005. "Pedestrian Behavior at Bottlenecks," Transportation Science, INFORMS, vol. 39(2), pages 147-159, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milad Haghani & Michiel C. J. Bliemer & John M. Rose & Harmen Oppewal & Emily Lancsar, 2021. "Hypothetical bias in stated choice experiments: Part I. Integrative synthesis of empirical evidence and conceptualisation of external validity," Papers 2102.02940, arXiv.org.
    2. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part II. Conceptualisation of external validity, sources and explanations of bias and effectiveness of mitigation methods," Journal of choice modelling, Elsevier, vol. 41(C).
    3. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part I. Macro-scale analysis of literature and integrative synthesis of empirical evidence from applied economics, experimental psychology and neuroimag," Journal of choice modelling, Elsevier, vol. 41(C).
    4. Haghani, Milad & Sarvi, Majid, 2018. "Hypothetical bias and decision-rule effect in modelling discrete directional choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 361-388.
    5. Gao, Dong Li & Xie, Wei & Ming Lee, Eric Wai, 2022. "Individual-level exit choice behaviour under uncertain risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    6. Shahhoseini, Zahra & Sarvi, Majid, 2019. "Pedestrian crowd flows in shared spaces: Investigating the impact of geometry based on micro and macro scale measures," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 57-87.
    7. Haghani, Milad & Sarvi, Majid, 2019. "Laboratory experimentation and simulation of discrete direction choices: Investigating hypothetical bias, decision-rule effect and external validity based on aggregate prediction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 134-157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haghani, Milad & Sarvi, Majid, 2018. "Hypothetical bias and decision-rule effect in modelling discrete directional choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 361-388.
    2. Haghani, Milad & Sarvi, Majid, 2018. "Crowd behaviour and motion: Empirical methods," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 253-294.
    3. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part II. Conceptualisation of external validity, sources and explanations of bias and effectiveness of mitigation methods," Journal of choice modelling, Elsevier, vol. 41(C).
    4. Milad Haghani & Michiel C. J. Bliemer & John M. Rose & Harmen Oppewal & Emily Lancsar, 2021. "Hypothetical bias in stated choice experiments: Part I. Integrative synthesis of empirical evidence and conceptualisation of external validity," Papers 2102.02940, arXiv.org.
    5. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    6. Haghani, Milad & Sarvi, Majid, 2017. "Stated and revealed exit choices of pedestrian crowd evacuees," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 238-259.
    7. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    8. Mohammed H. Alemu & Søren B. Olsen, 2017. "Can a Repeated Opt-Out Reminder remove hypothetical bias in discrete choice experiments? An application to consumer valuation of novel food products," IFRO Working Paper 2017/05, University of Copenhagen, Department of Food and Resource Economics.
    9. Haghani, Milad & Sarvi, Majid, 2019. "Laboratory experimentation and simulation of discrete direction choices: Investigating hypothetical bias, decision-rule effect and external validity based on aggregate prediction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 134-157.
    10. Shi, Xiaomeng & Ye, Zhirui & Shiwakoti, Nirajan & Tang, Dounan & Lin, Junkai, 2019. "Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 350-364.
    11. Omar Al-Ubaydli & John List, 2013. "On the Generalizability of Experimental Results in Economics: With A Response To Camerer," Artefactual Field Experiments j0001, The Field Experiments Website.
    12. Matteo M. Galizzi & Daniel Navarro-Martinez, 2019. "On the External Validity of Social Preference Games: A Systematic Lab-Field Study," Management Science, INFORMS, vol. 65(3), pages 976-1002, March.
    13. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    14. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
    15. Thomas S. Dee, 2014. "Stereotype Threat And The Student-Athlete," Economic Inquiry, Western Economic Association International, vol. 52(1), pages 173-182, January.
    16. Omar Al-Ubaydli & John A. List, 2013. "On the Generalizability of Experimental Results in Economics: With a Response to Commentors," CESifo Working Paper Series 4543, CESifo.
    17. Richard Yao & Riccardo Scarpa & John Rose & James Turner, 2015. "Experimental Design Criteria and Their Behavioural Efficiency: An Evaluation in the Field," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 433-455, November.
    18. Jan Stoop, 2014. "From the lab to the field: envelopes, dictators and manners," Experimental Economics, Springer;Economic Science Association, vol. 17(2), pages 304-313, June.
    19. James Alm & William D. Schulze & Carrie von Bose & Jubo Yan, 2019. "Appeals to Social Norms and Taxpayer Compliance," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 638-666, October.
    20. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0166908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.