IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003626.html
   My bibliography  Save this article

Inferring Host Gene Subnetworks Involved in Viral Replication

Author

Listed:
  • Deborah Chasman
  • Brandi Gancarz
  • Linhui Hao
  • Michael Ferris
  • Paul Ahlquist
  • Mark Craven

Abstract

Systematic, genome-wide loss-of-function experiments can be used to identify host factors that directly or indirectly facilitate or inhibit the replication of a virus in a host cell. We present an approach that combines an integer linear program and a diffusion kernel method to infer the pathways through which those host factors modulate viral replication. The inputs to the method are a set of viral phenotypes observed in single-host-gene mutants and a background network consisting of a variety of host intracellular interactions. The output is an ensemble of subnetworks that provides a consistent explanation for the measured phenotypes, predicts which unassayed host factors modulate the virus, and predicts which host factors are the most direct interfaces with the virus. We infer host-virus interaction subnetworks using data from experiments screening the yeast genome for genes modulating the replication of two RNA viruses. Because a gold-standard network is unavailable, we assess the predicted subnetworks using both computational and qualitative analyses. We conduct a cross-validation experiment in which we predict whether held-aside test genes have an effect on viral replication. Our approach is able to make high-confidence predictions more accurately than several baselines, and about as well as the best baseline, which does not infer mechanistic pathways. We also examine two kinds of predictions made by our method: which host factors are nearest to a direct interaction with a viral component, and which unassayed host genes are likely to be involved in viral replication. Multiple predictions are supported by recent independent experimental data, or are components or functional partners of confirmed relevant complexes or pathways. Integer program code, background network data, and inferred host-virus subnetworks are available at http://www.biostat.wisc.edu/~craven/chasman_host_virus/.Author Summary: Nearly every step of the viral life cycle requires the action or use of host machinery. Genome-wide suppression experiments have been used to identify individual host genes whose products are involved in viral replication. The hit sets identified by such experiments are typically fairly large and difficult to comprehend. We propose a method to infer subnetworks of intracellular interactions that explain the experimental data. These inferred subnetworks make the data more interpretable in terms of the mechanisms of viral replication and can be used to guide further experiments.

Suggested Citation

  • Deborah Chasman & Brandi Gancarz & Linhui Hao & Michael Ferris & Paul Ahlquist & Mark Craven, 2014. "Inferring Host Gene Subnetworks Involved in Viral Replication," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-22, May.
  • Handle: RePEc:plo:pcbi00:1003626
    DOI: 10.1371/journal.pcbi.1003626
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003626
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003626&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linhui Hao & Akira Sakurai & Tokiko Watanabe & Ericka Sorensen & Chairul A. Nidom & Michael A. Newton & Paul Ahlquist & Yoshihiro Kawaoka, 2008. "Drosophila RNAi screen identifies host genes important for influenza virus replication," Nature, Nature, vol. 454(7206), pages 890-893, August.
    2. Manoj N. Krishnan & Aylwin Ng & Bindu Sukumaran & Felicia D. Gilfoy & Pradeep D. Uchil & Hameeda Sultana & Abraham L. Brass & Rachel Adametz & Melody Tsui & Feng Qian & Ruth R. Montgomery & Sima Lev &, 2008. "RNA interference screen for human genes associated with West Nile virus infection," Nature, Nature, vol. 455(7210), pages 242-245, September.
    3. Oron Vanunu & Oded Magger & Eytan Ruppin & Tomer Shlomi & Roded Sharan, 2010. "Associating Genes and Protein Complexes with Disease via Network Propagation," PLOS Computational Biology, Public Library of Science, vol. 6(1), pages 1-9, January.
    4. T M Murali & Matthew D Dyer & David Badger & Brett M Tyler & Michael G Katze, 2011. "Network-Based Prediction and Analysis of HIV Dependency Factors," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T M Murali & Matthew D Dyer & David Badger & Brett M Tyler & Michael G Katze, 2011. "Network-Based Prediction and Analysis of HIV Dependency Factors," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-15, September.
    2. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    3. Xing Chen & Jun Yin & Jia Qu & Li Huang, 2018. "MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-24, August.
    4. Li-Chen Hung & Pei-Tseng Kung & Chi-Hsuan Lung & Ming-Hsui Tsai & Shih-An Liu & Li-Ting Chiu & Kuang-Hua Huang & Wen-Chen Tsai, 2020. "Assessment of the Risk of Oral Cancer Incidence in A High-Risk Population and Establishment of A Predictive Model for Oral Cancer Incidence Using A Population-Based Cohort in Taiwan," IJERPH, MDPI, vol. 17(2), pages 1-15, January.
    5. Jianhua Li & Xiaoyan Lin & Yueyang Teng & Shouliang Qi & Dayu Xiao & Jianying Zhang & Yan Kang, 2016. "A Comprehensive Evaluation of Disease Phenotype Networks for Gene Prioritization," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-18, July.
    6. Le Ou-Yang & Dao-Qing Dai & Xiao-Fei Zhang, 2013. "Protein Complex Detection via Weighted Ensemble Clustering Based on Bayesian Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-18, May.
    7. Casey S Greene & Olga G Troyanskaya, 2012. "Chapter 2: Data-Driven View of Disease Biology," PLOS Computational Biology, Public Library of Science, vol. 8(12), pages 1-8, December.
    8. Elisa Salviato & Vera Djordjilović & Monica Chiogna & Chiara Romualdi, 2019. "SourceSet: A graphical model approach to identify primary genes in perturbed biological pathways," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-28, October.
    9. Cui, Ying & Cai, Meng & Stanley, H. Eugene, 2018. "Discovering disease-associated genes in weighted protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 53-61.
    10. Mengyun Yang & Huimin Luo & Yaohang Li & Fang-Xiang Wu & Jianxin Wang, 2019. "Overlap matrix completion for predicting drug-associated indications," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-21, December.
    11. Abby Hill & Scott Gleim & Florian Kiefer & Frederic Sigoillot & Joseph Loureiro & Jeremy Jenkins & Melody K Morris, 2019. "Benchmarking network algorithms for contextualizing genes of interest," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-14, December.
    12. Florin Ratajczak & Mitchell Joblin & Marcel Hildebrandt & Martin Ringsquandl & Pascal Falter-Braun & Matthias Heinig, 2023. "Speos: an ensemble graph representation learning framework to predict core gene candidates for complex diseases," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Daniel E Carlin & Barry Demchak & Dexter Pratt & Eric Sage & Trey Ideker, 2017. "Network propagation in the cytoscape cyberinfrastructure," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-9, October.
    14. Abigail W Bigham & Kati J Buckingham & Sofia Husain & Mary J Emond & Kathryn M Bofferding & Heidi Gildersleeve & Ann Rutherford & Natalia M Astakhova & Andrey A Perelygin & Michael P Busch & Kristy O , 2011. "Host Genetic Risk Factors for West Nile Virus Infection and Disease Progression," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
    15. Juan J Cáceres & Alberto Paccanaro, 2019. "Disease gene prediction for molecularly uncharacterized diseases," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-14, July.
    16. U Martin Singh-Blom & Nagarajan Natarajan & Ambuj Tewari & John O Woods & Inderjit S Dhillon & Edward M Marcotte, 2013. "Prediction and Validation of Gene-Disease Associations Using Methods Inspired by Social Network Analyses," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-17, May.
    17. MaoQiang Xie & YingJie Xu & YaoGong Zhang & TaeHyun Hwang & Rui Kuang, 2015. "Network-based Phenome-Genome Association Prediction by Bi-Random Walk," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    18. Linhui Hao & Qiuling He & Zhishi Wang & Mark Craven & Michael A Newton & Paul Ahlquist, 2013. "Limited Agreement of Independent RNAi Screens for Virus-Required Host Genes Owes More to False-Negative than False-Positive Factors," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-20, September.
    19. Joana P Gonçalves & Alexandre P Francisco & Yves Moreau & Sara C Madeira, 2012. "Interactogeneous: Disease Gene Prioritization Using Heterogeneous Networks and Full Topology Scores," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-13, November.
    20. Konstantina Charmpi & Manopriya Chokkalingam & Ronja Johnen & Andreas Beyer, 2021. "Optimizing network propagation for multi-omics data integration," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-26, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.