IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002690.html
   My bibliography  Save this article

Enhancing the Prioritization of Disease-Causing Genes through Tissue Specific Protein Interaction Networks

Author

Listed:
  • Oded Magger
  • Yedael Y Waldman
  • Eytan Ruppin
  • Roded Sharan

Abstract

The prioritization of candidate disease-causing genes is a fundamental challenge in the post-genomic era. Current state of the art methods exploit a protein-protein interaction (PPI) network for this task. They are based on the observation that genes causing phenotypically-similar diseases tend to lie close to one another in a PPI network. However, to date, these methods have used a static picture of human PPIs, while diseases impact specific tissues in which the PPI networks may be dramatically different. Here, for the first time, we perform a large-scale assessment of the contribution of tissue-specific information to gene prioritization. By integrating tissue-specific gene expression data with PPI information, we construct tissue-specific PPI networks for 60 tissues and investigate their prioritization power. We find that tissue-specific PPI networks considerably improve the prioritization results compared to those obtained using a generic PPI network. Furthermore, they allow predicting novel disease-tissue associations, pointing to sub-clinical tissue effects that may escape early detection. Author Summary: Identifying the genes causing genetic disease is a key challenge in human health, and a crucial step on the road for developing novel diagnostics and treatments. Modern discovery methods involve genome-wide association studies that reveal regions of the genome where the causal gene is likely to reside, and then prioritizing the candidate genes within these regions and experimentally examining the most promising candidates' potential influence on the disease. Many computational methods were developed to automatically prioritize candidate genes. Some of the most successful methods use a biological network of interacting genes or proteins as an input. However, these networks – and subsequently, these methods – do not take into account the differences between tissues. In other words, a heart disease is analyzed using the same network as a skin disease. We constructed tissue-specific protein interaction networks and explored their effect on an existing prioritization algorithm by comparing the algorithm's performance on the tissue-specific networks and the generic network. We find that integrating tissue-specific data indeed leads to better prioritization. We also used the prioritization results of different tissues in order to suggest new disease-tissue associations.

Suggested Citation

  • Oded Magger & Yedael Y Waldman & Eytan Ruppin & Roded Sharan, 2012. "Enhancing the Prioritization of Disease-Causing Genes through Tissue Specific Protein Interaction Networks," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-10, September.
  • Handle: RePEc:plo:pcbi00:1002690
    DOI: 10.1371/journal.pcbi.1002690
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002690
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002690&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oron Vanunu & Oded Magger & Eytan Ruppin & Tomer Shlomi & Roded Sharan, 2010. "Associating Genes and Protein Complexes with Disease via Network Propagation," PLOS Computational Biology, Public Library of Science, vol. 6(1), pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    2. T M Murali & Matthew D Dyer & David Badger & Brett M Tyler & Michael G Katze, 2011. "Network-Based Prediction and Analysis of HIV Dependency Factors," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-15, September.
    3. Deborah Chasman & Brandi Gancarz & Linhui Hao & Michael Ferris & Paul Ahlquist & Mark Craven, 2014. "Inferring Host Gene Subnetworks Involved in Viral Replication," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-22, May.
    4. Xing Chen & Jun Yin & Jia Qu & Li Huang, 2018. "MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-24, August.
    5. Li-Chen Hung & Pei-Tseng Kung & Chi-Hsuan Lung & Ming-Hsui Tsai & Shih-An Liu & Li-Ting Chiu & Kuang-Hua Huang & Wen-Chen Tsai, 2020. "Assessment of the Risk of Oral Cancer Incidence in A High-Risk Population and Establishment of A Predictive Model for Oral Cancer Incidence Using A Population-Based Cohort in Taiwan," IJERPH, MDPI, vol. 17(2), pages 1-15, January.
    6. Jianhua Li & Xiaoyan Lin & Yueyang Teng & Shouliang Qi & Dayu Xiao & Jianying Zhang & Yan Kang, 2016. "A Comprehensive Evaluation of Disease Phenotype Networks for Gene Prioritization," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-18, July.
    7. Peng Yang & Xiaoli Li & Hon-Nian Chua & Chee-Keong Kwoh & See-Kiong Ng, 2014. "Ensemble Positive Unlabeled Learning for Disease Gene Identification," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-11, May.
    8. Le Ou-Yang & Dao-Qing Dai & Xiao-Fei Zhang, 2013. "Protein Complex Detection via Weighted Ensemble Clustering Based on Bayesian Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-18, May.
    9. Elisa Salviato & Vera Djordjilović & Monica Chiogna & Chiara Romualdi, 2019. "SourceSet: A graphical model approach to identify primary genes in perturbed biological pathways," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-28, October.
    10. Cui, Ying & Cai, Meng & Stanley, H. Eugene, 2018. "Discovering disease-associated genes in weighted protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 53-61.
    11. Mengyun Yang & Huimin Luo & Yaohang Li & Fang-Xiang Wu & Jianxin Wang, 2019. "Overlap matrix completion for predicting drug-associated indications," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-21, December.
    12. Abby Hill & Scott Gleim & Florian Kiefer & Frederic Sigoillot & Joseph Loureiro & Jeremy Jenkins & Melody K Morris, 2019. "Benchmarking network algorithms for contextualizing genes of interest," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-14, December.
    13. Florin Ratajczak & Mitchell Joblin & Marcel Hildebrandt & Martin Ringsquandl & Pascal Falter-Braun & Matthias Heinig, 2023. "Speos: an ensemble graph representation learning framework to predict core gene candidates for complex diseases," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Daniel E Carlin & Barry Demchak & Dexter Pratt & Eric Sage & Trey Ideker, 2017. "Network propagation in the cytoscape cyberinfrastructure," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-9, October.
    15. Dorothea Emig & Alexander Ivliev & Olga Pustovalova & Lee Lancashire & Svetlana Bureeva & Yuri Nikolsky & Marina Bessarabova, 2013. "Drug Target Prediction and Repositioning Using an Integrated Network-Based Approach," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-17, April.
    16. Juan J Cáceres & Alberto Paccanaro, 2019. "Disease gene prediction for molecularly uncharacterized diseases," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-14, July.
    17. U Martin Singh-Blom & Nagarajan Natarajan & Ambuj Tewari & John O Woods & Inderjit S Dhillon & Edward M Marcotte, 2013. "Prediction and Validation of Gene-Disease Associations Using Methods Inspired by Social Network Analyses," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-17, May.
    18. MaoQiang Xie & YingJie Xu & YaoGong Zhang & TaeHyun Hwang & Rui Kuang, 2015. "Network-based Phenome-Genome Association Prediction by Bi-Random Walk," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    19. Joana P Gonçalves & Alexandre P Francisco & Yves Moreau & Sara C Madeira, 2012. "Interactogeneous: Disease Gene Prioritization Using Heterogeneous Networks and Full Topology Scores," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-13, November.
    20. Konstantina Charmpi & Manopriya Chokkalingam & Ronja Johnen & Andreas Beyer, 2021. "Optimizing network propagation for multi-omics data integration," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-26, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.