IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0062158.html
   My bibliography  Save this article

Protein Complex Detection via Weighted Ensemble Clustering Based on Bayesian Nonnegative Matrix Factorization

Author

Listed:
  • Le Ou-Yang
  • Dao-Qing Dai
  • Xiao-Fei Zhang

Abstract

: Detecting protein complexes from protein-protein interaction (PPI) networks is a challenging task in computational biology. A vast number of computational methods have been proposed to undertake this task. However, each computational method is developed to capture one aspect of the network. The performance of different methods on the same network can differ substantially, even the same method may have different performance on networks with different topological characteristic. The clustering result of each computational method can be regarded as a feature that describes the PPI network from one aspect. It is therefore desirable to utilize these features to produce a more accurate and reliable clustering. In this paper, a novel Bayesian Nonnegative Matrix Factorization(NMF)-based weighted Ensemble Clustering algorithm (EC-BNMF) is proposed to detect protein complexes from PPI networks. We first apply different computational algorithms on a PPI network to generate some base clustering results. Then we integrate these base clustering results into an ensemble PPI network, in the form of weighted combination. Finally, we identify overlapping protein complexes from this network by employing Bayesian NMF model. When generating an ensemble PPI network, EC-BNMF can automatically optimize the values of weights such that the ensemble algorithm can deliver better results. Experimental results on four PPI networks of Saccharomyces cerevisiae well verify the effectiveness of EC-BNMF in detecting protein complexes. EC-BNMF provides an effective way to integrate different clustering results for more accurate and reliable complex detection. Furthermore, EC-BNMF has a high degree of flexibility in the choice of base clustering results. It can be coupled with existing clustering methods to identify protein complexes.

Suggested Citation

  • Le Ou-Yang & Dao-Qing Dai & Xiao-Fei Zhang, 2013. "Protein Complex Detection via Weighted Ensemble Clustering Based on Bayesian Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-18, May.
  • Handle: RePEc:plo:pone00:0062158
    DOI: 10.1371/journal.pone.0062158
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062158
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0062158&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0062158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Yong-Yeol Ahn & James P. Bagrow & Sune Lehmann, 2010. "Link communities reveal multiscale complexity in networks," Nature, Nature, vol. 466(7307), pages 761-764, August.
    3. Xiao-Fei Zhang & Dao-Qing Dai & Le Ou-Yang & Meng-Yun Wu, 2012. "Exploring Overlapping Functional Units with Various Structure in Protein Interaction Networks," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-11, August.
    4. Oron Vanunu & Oded Magger & Eytan Ruppin & Tomer Shlomi & Roded Sharan, 2010. "Associating Genes and Protein Complexes with Disease via Network Propagation," PLOS Computational Biology, Public Library of Science, vol. 6(1), pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amir Lakizadeh & Saeed Jalili, 2016. "BiCAMWI: A Genetic-Based Biclustering Algorithm for Detecting Dynamic Protein Complexes," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    2. Zhang, Hongli & Gao, Yang & Zhang, Yue, 2018. "Overlapping communities from dense disjoint and high total degree clusters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 286-298.
    3. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Overlapping community detection using neighborhood ratio matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 510-521.
    4. Gao, Yang & Zhang, Hongli & Zhang, Yue, 2019. "Overlapping community detection based on conductance optimization in large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 69-79.
    5. Gao, Yang & Zhang, Hongli & Zhang, Yue, 2019. "Overlapping communities from lines and triangles in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 455-466.
    6. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    7. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    8. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    9. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    10. T M Murali & Matthew D Dyer & David Badger & Brett M Tyler & Michael G Katze, 2011. "Network-Based Prediction and Analysis of HIV Dependency Factors," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-15, September.
    11. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    12. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    13. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    14. Jo, Hang-Hyun & Moon, Eunyoung, 2016. "Dynamical complexity in the perception-based network formation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 282-292.
    15. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    16. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.
    17. Yu, Shuo & Alqahtani, Fayez & Tolba, Amr & Lee, Ivan & Jia, Tao & Xia, Feng, 2022. "Collaborative Team Recognition: A Core Plus Extension Structure," Journal of Informetrics, Elsevier, vol. 16(4).
    18. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    19. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    20. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0062158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.