IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002164.html
   My bibliography  Save this article

Network-Based Prediction and Analysis of HIV Dependency Factors

Author

Listed:
  • T M Murali
  • Matthew D Dyer
  • David Badger
  • Brett M Tyler
  • Michael G Katze

Abstract

HIV Dependency Factors (HDFs) are a class of human proteins that are essential for HIV replication, but are not lethal to the host cell when silenced. Three previous genome-wide RNAi experiments identified HDF sets with little overlap. We combine data from these three studies with a human protein interaction network to predict new HDFs, using an intuitive algorithm called SinkSource and four other algorithms published in the literature. Our algorithm achieves high precision and recall upon cross validation, as do the other methods. A number of HDFs that we predict are known to interact with HIV proteins. They belong to multiple protein complexes and biological processes that are known to be manipulated by HIV. We also demonstrate that many predicted HDF genes show significantly different programs of expression in early response to SIV infection in two non-human primate species that differ in AIDS progression. Our results suggest that many HDFs are yet to be discovered and that they have potential value as prognostic markers to determine pathological outcome and the likelihood of AIDS development. More generally, if multiple genome-wide gene-level studies have been performed at independent labs to study the same biological system or phenomenon, our methodology is applicable to interpret these studies simultaneously in the context of molecular interaction networks and to ask if they reinforce or contradict each other. Author Summary: Medicines to cure infectious diseases usually target proteins in the pathogens. Since pathogens have short life cycles, the targeted proteins can rapidly evolve and make the medicines ineffective, especially in viruses such as HIV. However, since viruses have very small genomes, they must exploit the cellular machinery of the host to propagate. Therefore, disrupting the activity of selected host proteins may impede viruses. Three recent experiments have discovered hundreds of such proteins in human cells that HIV depends upon. Surprisingly, these three sets have very little overlap. In this work, we demonstrate that this discrepancy can be explained by considering physical interactions between the human proteins in these studies. Moreover, we exploit these interactions to predict new dependency factors for HIV. Our predictions show very significant overlaps with human proteins that are known to interact with HIV proteins and with human cellular processes that are known to be subverted by the virus. Most importantly, we show that proteins predicted by us may play a prominent role in affecting HIV-related disease progression in lymph nodes. Therefore, our predictions constitute a powerful resource for experimentalists who desire to discover new human proteins that can control the spread of HIV.

Suggested Citation

  • T M Murali & Matthew D Dyer & David Badger & Brett M Tyler & Michael G Katze, 2011. "Network-Based Prediction and Analysis of HIV Dependency Factors," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-15, September.
  • Handle: RePEc:plo:pcbi00:1002164
    DOI: 10.1371/journal.pcbi.1002164
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002164
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002164&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manoj N. Krishnan & Aylwin Ng & Bindu Sukumaran & Felicia D. Gilfoy & Pradeep D. Uchil & Hameeda Sultana & Abraham L. Brass & Rachel Adametz & Melody Tsui & Feng Qian & Ruth R. Montgomery & Sima Lev &, 2008. "RNA interference screen for human genes associated with West Nile virus infection," Nature, Nature, vol. 455(7210), pages 242-245, September.
    2. Yick W. Fong & Qiang Zhou, 2001. "Stimulatory effect of splicing factors on transcriptional elongation," Nature, Nature, vol. 414(6866), pages 929-933, December.
    3. Oron Vanunu & Oded Magger & Eytan Ruppin & Tomer Shlomi & Roded Sharan, 2010. "Associating Genes and Protein Complexes with Disease via Network Propagation," PLOS Computational Biology, Public Library of Science, vol. 6(1), pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deborah Chasman & Brandi Gancarz & Linhui Hao & Michael Ferris & Paul Ahlquist & Mark Craven, 2014. "Inferring Host Gene Subnetworks Involved in Viral Replication," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deborah Chasman & Brandi Gancarz & Linhui Hao & Michael Ferris & Paul Ahlquist & Mark Craven, 2014. "Inferring Host Gene Subnetworks Involved in Viral Replication," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-22, May.
    2. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    3. Xing Chen & Jun Yin & Jia Qu & Li Huang, 2018. "MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-24, August.
    4. Li-Chen Hung & Pei-Tseng Kung & Chi-Hsuan Lung & Ming-Hsui Tsai & Shih-An Liu & Li-Ting Chiu & Kuang-Hua Huang & Wen-Chen Tsai, 2020. "Assessment of the Risk of Oral Cancer Incidence in A High-Risk Population and Establishment of A Predictive Model for Oral Cancer Incidence Using A Population-Based Cohort in Taiwan," IJERPH, MDPI, vol. 17(2), pages 1-15, January.
    5. Jianhua Li & Xiaoyan Lin & Yueyang Teng & Shouliang Qi & Dayu Xiao & Jianying Zhang & Yan Kang, 2016. "A Comprehensive Evaluation of Disease Phenotype Networks for Gene Prioritization," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-18, July.
    6. Le Ou-Yang & Dao-Qing Dai & Xiao-Fei Zhang, 2013. "Protein Complex Detection via Weighted Ensemble Clustering Based on Bayesian Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-18, May.
    7. Casey S Greene & Olga G Troyanskaya, 2012. "Chapter 2: Data-Driven View of Disease Biology," PLOS Computational Biology, Public Library of Science, vol. 8(12), pages 1-8, December.
    8. Elisa Salviato & Vera Djordjilović & Monica Chiogna & Chiara Romualdi, 2019. "SourceSet: A graphical model approach to identify primary genes in perturbed biological pathways," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-28, October.
    9. Cui, Ying & Cai, Meng & Stanley, H. Eugene, 2018. "Discovering disease-associated genes in weighted protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 53-61.
    10. Mengyun Yang & Huimin Luo & Yaohang Li & Fang-Xiang Wu & Jianxin Wang, 2019. "Overlap matrix completion for predicting drug-associated indications," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-21, December.
    11. Abby Hill & Scott Gleim & Florian Kiefer & Frederic Sigoillot & Joseph Loureiro & Jeremy Jenkins & Melody K Morris, 2019. "Benchmarking network algorithms for contextualizing genes of interest," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-14, December.
    12. Florin Ratajczak & Mitchell Joblin & Marcel Hildebrandt & Martin Ringsquandl & Pascal Falter-Braun & Matthias Heinig, 2023. "Speos: an ensemble graph representation learning framework to predict core gene candidates for complex diseases," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Daniel E Carlin & Barry Demchak & Dexter Pratt & Eric Sage & Trey Ideker, 2017. "Network propagation in the cytoscape cyberinfrastructure," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-9, October.
    14. Abigail W Bigham & Kati J Buckingham & Sofia Husain & Mary J Emond & Kathryn M Bofferding & Heidi Gildersleeve & Ann Rutherford & Natalia M Astakhova & Andrey A Perelygin & Michael P Busch & Kristy O , 2011. "Host Genetic Risk Factors for West Nile Virus Infection and Disease Progression," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
    15. Juan J Cáceres & Alberto Paccanaro, 2019. "Disease gene prediction for molecularly uncharacterized diseases," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-14, July.
    16. U Martin Singh-Blom & Nagarajan Natarajan & Ambuj Tewari & John O Woods & Inderjit S Dhillon & Edward M Marcotte, 2013. "Prediction and Validation of Gene-Disease Associations Using Methods Inspired by Social Network Analyses," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-17, May.
    17. MaoQiang Xie & YingJie Xu & YaoGong Zhang & TaeHyun Hwang & Rui Kuang, 2015. "Network-based Phenome-Genome Association Prediction by Bi-Random Walk," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    18. Linhui Hao & Qiuling He & Zhishi Wang & Mark Craven & Michael A Newton & Paul Ahlquist, 2013. "Limited Agreement of Independent RNAi Screens for Virus-Required Host Genes Owes More to False-Negative than False-Positive Factors," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-20, September.
    19. Joana P Gonçalves & Alexandre P Francisco & Yves Moreau & Sara C Madeira, 2012. "Interactogeneous: Disease Gene Prioritization Using Heterogeneous Networks and Full Topology Scores," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-13, November.
    20. Konstantina Charmpi & Manopriya Chokkalingam & Ronja Johnen & Andreas Beyer, 2021. "Optimizing network propagation for multi-omics data integration," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-26, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.