IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007541.html
   My bibliography  Save this article

Overlap matrix completion for predicting drug-associated indications

Author

Listed:
  • Mengyun Yang
  • Huimin Luo
  • Yaohang Li
  • Fang-Xiang Wu
  • Jianxin Wang

Abstract

Identification of potential drug–associated indications is critical for either approved or novel drugs in drug repositioning. Current computational methods based on drug similarity and disease similarity have been developed to predict drug–disease associations. When more reliable drug- or disease-related information becomes available and is integrated, the prediction precision can be continuously improved. However, it is a challenging problem to effectively incorporate multiple types of prior information, representing different characteristics of drugs and diseases, to identify promising drug–disease associations. In this study, we propose an overlap matrix completion (OMC) for bilayer networks (OMC2) and tri-layer networks (OMC3) to predict potential drug-associated indications, respectively. OMC is able to efficiently exploit the underlying low-rank structures of the drug–disease association matrices. In OMC2, first of all, we construct one bilayer network from drug-side aspect and one from disease-side aspect, and then obtain their corresponding block adjacency matrices. We then propose the OMC2 algorithm to fill out the values of the missing entries in these two adjacency matrices, and predict the scores of unknown drug–disease pairs. Moreover, we further extend OMC2 to OMC3 to handle tri-layer networks. Computational experiments on various datasets indicate that our OMC methods can effectively predict the potential drug–disease associations. Compared with the other state-of-the-art approaches, our methods yield higher prediction accuracy in 10-fold cross-validation and de novo experiments. In addition, case studies also confirm the effectiveness of our methods in identifying promising indications for existing drugs in practical applications.Author summary: This work introduces a computational approach, namely overlap matrix completion (OMC), to predict potential associations between drugs and diseases. The novelty of OMC lies in constructing an efficient framework of incorporating multiple types of prior information in bilayer and tri-layer networks. OMC for bilayer networks (OMC2) can approximate the low-rank structures of the drug–disease association matrices from both drug-side and disease-side. In addition, we further improve the prediction accuracy by extending OMC to handle tri-layer networks and develop its corresponding algorithm (OMC3). To evaluate the performance of OMC2 and OMC3, we conduct 10-fold cross-validation and de novo experiments on three datasets. Our computational results demonstrate that both OMC2 and OMC3 generally outperform five state-of-the-art methods in terms of ROC curve, PR curve, and top-ranked predictions.

Suggested Citation

  • Mengyun Yang & Huimin Luo & Yaohang Li & Fang-Xiang Wu & Jianxin Wang, 2019. "Overlap matrix completion for predicting drug-associated indications," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-21, December.
  • Handle: RePEc:plo:pcbi00:1007541
    DOI: 10.1371/journal.pcbi.1007541
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007541
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007541&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oron Vanunu & Oded Magger & Eytan Ruppin & Tomer Shlomi & Roded Sharan, 2010. "Associating Genes and Protein Complexes with Disease via Network Propagation," PLOS Computational Biology, Public Library of Science, vol. 6(1), pages 1-9, January.
    2. Curtis R. Chong & David J. Sullivan, 2007. "New uses for old drugs," Nature, Nature, vol. 448(7154), pages 645-646, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    2. T M Murali & Matthew D Dyer & David Badger & Brett M Tyler & Michael G Katze, 2011. "Network-Based Prediction and Analysis of HIV Dependency Factors," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-15, September.
    3. Sternitzke, Christian, 2013. "An exploratory analysis of patent fencing in pharmaceuticals: The case of PDE5 inhibitors," Research Policy, Elsevier, vol. 42(2), pages 542-551.
    4. Deborah Chasman & Brandi Gancarz & Linhui Hao & Michael Ferris & Paul Ahlquist & Mark Craven, 2014. "Inferring Host Gene Subnetworks Involved in Viral Replication," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-22, May.
    5. Xing Chen & Jun Yin & Jia Qu & Li Huang, 2018. "MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-24, August.
    6. Li-Chen Hung & Pei-Tseng Kung & Chi-Hsuan Lung & Ming-Hsui Tsai & Shih-An Liu & Li-Ting Chiu & Kuang-Hua Huang & Wen-Chen Tsai, 2020. "Assessment of the Risk of Oral Cancer Incidence in A High-Risk Population and Establishment of A Predictive Model for Oral Cancer Incidence Using A Population-Based Cohort in Taiwan," IJERPH, MDPI, vol. 17(2), pages 1-15, January.
    7. Jianhua Li & Xiaoyan Lin & Yueyang Teng & Shouliang Qi & Dayu Xiao & Jianying Zhang & Yan Kang, 2016. "A Comprehensive Evaluation of Disease Phenotype Networks for Gene Prioritization," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-18, July.
    8. Hanlin Wang & Guanghao Luo & Xiaobei Hu & Gaoya Xu & Tao Wang & Minmin Liu & Xiaohui Qiu & Jianan Li & Jingfeng Fu & Bo Feng & Yutong Tu & Weijuan Kan & Chang Wang & Ran Xu & Yubo Zhou & Jianmin Yang , 2023. "Targeting C/EBPα overcomes primary resistance and improves the efficacy of FLT3 inhibitors in acute myeloid leukaemia," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Le Ou-Yang & Dao-Qing Dai & Xiao-Fei Zhang, 2013. "Protein Complex Detection via Weighted Ensemble Clustering Based on Bayesian Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-18, May.
    10. Aditi Chattopadhyay & Madhavi K. Ganapathiraju, 2017. "Demonstration Study: A Protocol to Combine Online Tools and Databases for Identifying Potentially Repurposable Drugs," Data, MDPI, vol. 2(2), pages 1-11, May.
    11. Elisa Salviato & Vera Djordjilović & Monica Chiogna & Chiara Romualdi, 2019. "SourceSet: A graphical model approach to identify primary genes in perturbed biological pathways," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-28, October.
    12. Cui, Ying & Cai, Meng & Stanley, H. Eugene, 2018. "Discovering disease-associated genes in weighted protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 53-61.
    13. Abby Hill & Scott Gleim & Florian Kiefer & Frederic Sigoillot & Joseph Loureiro & Jeremy Jenkins & Melody K Morris, 2019. "Benchmarking network algorithms for contextualizing genes of interest," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-14, December.
    14. Florin Ratajczak & Mitchell Joblin & Marcel Hildebrandt & Martin Ringsquandl & Pascal Falter-Braun & Matthias Heinig, 2023. "Speos: an ensemble graph representation learning framework to predict core gene candidates for complex diseases," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Sternitzke, Christian, 2010. "Knowledge sources, patent protection, and commercialization of pharmaceutical innovations," Research Policy, Elsevier, vol. 39(6), pages 810-821, July.
    16. Daniel E Carlin & Barry Demchak & Dexter Pratt & Eric Sage & Trey Ideker, 2017. "Network propagation in the cytoscape cyberinfrastructure," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-9, October.
    17. Juan J Cáceres & Alberto Paccanaro, 2019. "Disease gene prediction for molecularly uncharacterized diseases," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-14, July.
    18. Irati Macaya & Marta Roman & Connor Welch & Rodrigo Entrialgo-Cadierno & Marina Salmon & Alba Santos & Iker Feliu & Joanna Kovalski & Ines Lopez & Maria Rodriguez-Remirez & Sara Palomino-Echeverria & , 2023. "Signature-driven repurposing of Midostaurin for combination with MEK1/2 and KRASG12C inhibitors in lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. U Martin Singh-Blom & Nagarajan Natarajan & Ambuj Tewari & John O Woods & Inderjit S Dhillon & Edward M Marcotte, 2013. "Prediction and Validation of Gene-Disease Associations Using Methods Inspired by Social Network Analyses," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-17, May.
    20. MaoQiang Xie & YingJie Xu & YaoGong Zhang & TaeHyun Hwang & Rui Kuang, 2015. "Network-based Phenome-Genome Association Prediction by Bi-Random Walk," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.