IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003016.html
   My bibliography  Save this article

Synthetic Lethality between Gene Defects Affecting a Single Non-essential Molecular Pathway with Reversible Steps

Author

Listed:
  • Andrei Zinovyev
  • Inna Kuperstein
  • Emmanuel Barillot
  • Wolf-Dietrich Heyer

Abstract

Systematic analysis of synthetic lethality (SL) constitutes a critical tool for systems biology to decipher molecular pathways. The most accepted mechanistic explanation of SL is that the two genes function in parallel, mutually compensatory pathways, known as between-pathway SL. However, recent genome-wide analyses in yeast identified a significant number of within-pathway negative genetic interactions. The molecular mechanisms leading to within-pathway SL are not fully understood. Here, we propose a novel mechanism leading to within-pathway SL involving two genes functioning in a single non-essential pathway. This type of SL termed within-reversible-pathway SL involves reversible pathway steps, catalyzed by different enzymes in the forward and backward directions, and kinetic trapping of a potentially toxic intermediate. Experimental data with recombinational DNA repair genes validate the concept. Mathematical modeling recapitulates the possibility of kinetic trapping and revealed the potential contributions of synthetic, dosage-lethal interactions in such a genetic system as well as the possibility of within-pathway positive masking interactions. Analysis of yeast gene interaction and pathway data suggests broad applicability of this novel concept. These observations extend the canonical interpretation of synthetic-lethal or synthetic-sick interactions with direct implications to reconstruct molecular pathways and improve therapeutic approaches to diseases such as cancer. Author Summary: Organizing gene functions into molecular pathways is a major challenge in biology. The observation that two viable gene mutations become lethal when combined as a double mutant has been developed into a major genetic tool called synthetic lethality. The classic interpretation of synthetic lethality stipulates that the two mutations identify genes that work in parallel, mutually compensatory pathways that together perform an essential function. However, a significant number of negative interactions are caused by defects affecting a single molecular pathway. Here, we recapitulate by mathematical modeling recent experimental data that demonstrate synthetic lethality between mutations in genes acting in a single, non-essential molecular pathway. We propose a novel mechanism involving reversible pathways steps and trapping of an intermediate. The modeling also predicts that overexpression of certain genes functioning in reversible pathways will lead to synthetic lethality with gene defects in the same pathway. Our results significantly broaden the interpretation of synthetic lethal and synthetic dosage effects, which fundamentally impacts the assignment of genes to pathways. The concept of synthetic lethality has been applied to cancer therapy, and our modeling results suggest new approaches to how to target a single pathway to induce synthetic lethality in cancer cells.

Suggested Citation

  • Andrei Zinovyev & Inna Kuperstein & Emmanuel Barillot & Wolf-Dietrich Heyer, 2013. "Synthetic Lethality between Gene Defects Affecting a Single Non-essential Molecular Pathway with Reversible Steps," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-12, April.
  • Handle: RePEc:plo:pcbi00:1003016
    DOI: 10.1371/journal.pcbi.1003016
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003016
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003016&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.