IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30311-w.html
   My bibliography  Save this article

Synthetic lethality between TP53 and ENDOD1

Author

Listed:
  • Zizhi Tang

    (West China Second University Hospital, Sichuan University)

  • Ming Zeng

    (West China Second University Hospital, Sichuan University)

  • Xiaojun Wang

    (West China Second University Hospital, Sichuan University)

  • Chang Guo

    (West China Second University Hospital, Sichuan University)

  • Peng Yue

    (West China Second University Hospital, Sichuan University)

  • Xiaohu Zhang

    (West China Second University Hospital, Sichuan University)

  • Huiqiang Lou

    (China Agricultural University)

  • Jun Chen

    (Zhejiang University)

  • Dezhi Mu

    (West China Second University Hospital, Sichuan University)

  • Daochun Kong

    (Peking University)

  • Antony M. Carr

    (University of Sussex)

  • Cong Liu

    (West China Second University Hospital, Sichuan University
    University of Sussex)

Abstract

The atypical nuclease ENDOD1 functions with cGAS-STING in innate immunity. Here we identify a previously uncharacterized ENDOD1 function in DNA repair. ENDOD1 is enriched in the nucleus following H2O2 treatment and ENDOD1−/− cells show increased PARP chromatin-association. Loss of ENDOD1 function is synthetic lethal with homologous recombination defects, with affected cells accumulating DNA double strand breaks. Remarkably, we also uncover an additional synthetic lethality between ENDOD1 and p53. ENDOD1 depletion in TP53 mutated tumour cells, or p53 depletion in ENDOD1−/− cells, results in rapid single stranded DNA accumulation and cell death. Because TP53 is mutated in ~50% of tumours, ENDOD1 has potential as a wide-spectrum target for synthetic lethal treatments. To support this we demonstrate that systemic knockdown of mouse EndoD1 is well tolerated and whole-animal siRNA against human ENDOD1 restrains TP53 mutated tumour progression in xenograft models. These data identify ENDOD1 as a potential cancer-specific target for SL drug discovery.

Suggested Citation

  • Zizhi Tang & Ming Zeng & Xiaojun Wang & Chang Guo & Peng Yue & Xiaohu Zhang & Huiqiang Lou & Jun Chen & Dezhi Mu & Daochun Kong & Antony M. Carr & Cong Liu, 2022. "Synthetic lethality between TP53 and ENDOD1," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30311-w
    DOI: 10.1038/s41467-022-30311-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30311-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30311-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hannah Farmer & Nuala McCabe & Christopher J. Lord & Andrew N. J. Tutt & Damian A. Johnson & Tobias B. Richardson & Manuela Santarosa & Krystyna J. Dillon & Ian Hickson & Charlotte Knights & Niall M. , 2005. "Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy," Nature, Nature, vol. 434(7035), pages 917-921, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neil J. Rzechorzek & Simone Kunzelmann & Andrew G. Purkiss & Mariana Silva Dos Santos & James I. MacRae & Ian A. Taylor & Kasper Fugger & Stephen C. West, 2023. "Mechanism of substrate hydrolysis by the human nucleotide pool sanitiser DNPH1," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Heathcliff Dorado García & Fabian Pusch & Yi Bei & Jennifer Stebut & Glorymar Ibáñez & Kristina Guillan & Koshi Imami & Dennis Gürgen & Jana Rolff & Konstantin Helmsauer & Stephanie Meyer-Liesener & N, 2022. "Therapeutic targeting of ATR in alveolar rhabdomyosarcoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Sundarraj Jayakumar & Manthan Patel & Fanny Boulet & Hadicha Aziz & Greg N. Brooke & Hemanth Tummala & Madapura M. Pradeepa, 2024. "PSIP1/LEDGF reduces R-loops at transcription sites to maintain genome integrity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Samuel D. Chauvin & Shoichiro Ando & Joe A. Holley & Atsushi Sugie & Fang R. Zhao & Subhajit Poddar & Rei Kato & Cathrine A. Miner & Yohei Nitta & Siddharth R. Krishnamurthy & Rie Saito & Yue Ning & Y, 2024. "Inherited C-terminal TREX1 variants disrupt homology-directed repair to cause senescence and DNA damage phenotypes in Drosophila, mice, and humans," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    5. Arindam Datta & Kajal Biswas & Joshua A. Sommers & Haley Thompson & Sanket Awate & Claudia M. Nicolae & Tanay Thakar & George-Lucian Moldovan & Robert H. Shoemaker & Shyam K. Sharan & Robert M. Brosh, 2021. "WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    6. Meng Wang & Satoshi Fukushima & Yi-Shuan Sheen & Egle Ramelyte & Noel Cruz-Pacheco & Chenxu Shi & Shanshan Liu & Ishani Banik & Jamie D. Aquino & Martin Sangueza Acosta & Mitchell Levesque & Reinhard , 2024. "The genetic evolution of acral melanoma," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Jun Dai & Shuyu Zheng & Matías M. Falco & Jie Bao & Johanna Eriksson & Sanna Pikkusaari & Sofia Forstén & Jing Jiang & Wenyu Wang & Luping Gao & Fernando Perez-Villatoro & Olli Dufva & Khalid Saeed & , 2024. "Tracing back primed resistance in cancer via sister cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Youngho Kwon & Heike Rösner & Weixing Zhao & Platon Selemenakis & Zhuoling He & Ajinkya S. Kawale & Jeffrey N. Katz & Cody M. Rogers & Francisco E. Neal & Aida Badamchi Shabestari & Valdemaras Petrosi, 2023. "DNA binding and RAD51 engagement by the BRCA2 C-terminus orchestrate DNA repair and replication fork preservation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Scisung Chung & Mi-Sun Kang & Dauren S. Alimbetov & Gil-Im Mun & Na-Oh Yunn & Yunjin Kim & Byung-Gyu Kim & Minwoo Wie & Eun A. Lee & Jae Sun Ra & Jung-Min Oh & Donghyun Lee & Keondo Lee & Jihan Kim & , 2022. "Regulation of BRCA1 stability through the tandem UBX domains of isoleucyl-tRNA synthetase 1," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Yonina R. Murciano-Goroff & Alison M. Schram & Ezra Y. Rosen & Helen Won & Yixiao Gong & Anne Marie Noronha & Yelena Y. Janjigian & Zsofia K. Stadler & Jason C. Chang & Soo-Ryum Yang & Diana Mandelker, 2022. "Reversion mutations in germline BRCA1/2-mutant tumors reveal a BRCA-mediated phenotype in non-canonical histologies," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Sumin Feng & Sai Ma & Kejiao Li & Shengxian Gao & Shaokai Ning & Jinfeng Shang & Ruiyuan Guo & Yingying Chen & Britny Blumenfeld & Itamar Simon & Qing Li & Rong Guo & Dongyi Xu, 2022. "RIF1-ASF1-mediated high-order chromatin structure safeguards genome integrity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Ramona N. Moro & Uddipta Biswas & Suhas S. Kharat & Filip D. Duzanic & Prosun Das & Maria Stavrou & Maria C. Raso & Raimundo Freire & Arnab Ray Chaudhuri & Shyam K. Sharan & Lorenza Penengo, 2023. "Interferon restores replication fork stability and cell viability in BRCA-defective cells via ISG15," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Wei Liu & Hongchao Cao & Jing Wang & Areeg Elmusrati & Bing Han & Wei Chen & Ping Zhou & Xiyao Li & Stephen Keysar & Antonio Jimeno & Cun-Yu Wang, 2024. "Histone-methyltransferase KMT2D deficiency impairs the Fanconi anemia/BRCA pathway upon glycolytic inhibition in squamous cell carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Domagoj Vugic & Isaac Dumoulin & Charlotte Martin & Anna Minello & Lucia Alvaro-Aranda & Jesus Gomez-Escudero & Rady Chaaban & Rana Lebdy & Catharina Nicolai & Virginie Boucherit & Cyril Ribeyre & Ang, 2023. "Replication gap suppression depends on the double-strand DNA binding activity of BRCA2," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Martina Minoli & Thomas Cantore & Daniel Hanhart & Mirjam Kiener & Tarcisio Fedrizzi & Federico La Manna & Sofia Karkampouna & Panagiotis Chouvardas & Vera Genitsch & Antonio Rodriguez-Calero & Eva Co, 2023. "Bladder cancer organoids as a functional system to model different disease stages and therapy response," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Anne Margriet Heijink & Colin Stok & David Porubsky & Eleni Maria Manolika & Jurrian K. Kanter & Yannick P. Kok & Marieke Everts & H. Rudolf Boer & Anastasia Audrey & Femke J. Bakker & Elles Wierenga , 2022. "Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Zu Ye & Shengfeng Xu & Yin Shi & Xueqian Cheng & Yuan Zhang & Sunetra Roy & Sarita Namjoshi & Michael A. Longo & Todd M. Link & Katharina Schlacher & Guang Peng & Dihua Yu & Bin Wang & John A. Tainer , 2024. "GRB2 stabilizes RAD51 at reversed replication forks suppressing genomic instability and innate immunity against cancer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Tomoko Yamamori Morita & Jie Yu & Yukie Kashima & Ryo Kamata & Gaku Yamamoto & Tatsunori Minamide & Chiaki Mashima & Miyuki Yoshiya & Yuta Sakae & Toyohiro Yamauchi & Yumi Hakozaki & Shun-ichiro Kagey, 2023. "CDC7 inhibition induces replication stress-mediated aneuploid cells with an inflammatory phenotype sensitizing tumors to immune checkpoint blockade," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    19. Fumiaki Ito & Ziyuan Li & Leonid Minakhin & Gurushankar Chandramouly & Mrityunjay Tyagi & Robert Betsch & John J. Krais & Bernadette Taberi & Umeshkumar Vekariya & Marissa Calbert & Tomasz Skorski & N, 2024. "Structural basis for a Polθ helicase small-molecule inhibitor revealed by cryo-EM," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Zuzana Machacova & Katarina Chroma & David Lukac & Iva Protivankova & Pavel Moudry, 2024. "DNA polymerase α-primase facilitates PARP inhibitor-induced fork acceleration and protects BRCA1-deficient cells against ssDNA gaps," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30311-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.