IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i13p8113-d854056.html
   My bibliography  Save this article

Epithelial Ovarian Cancer: Providing Evidence of Predisposition Genes

Author

Listed:
  • Sidrah Shah

    (Department of Palliative Care, Guy’s and St Thomas’ Hospital, London SE1 9RT, UK)

  • Alison Cheung

    (Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham ME7 5NY, UK)

  • Mikolaj Kutka

    (Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham ME7 5NY, UK)

  • Matin Sheriff

    (Department of Urology, Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham ME7 5NY, UK)

  • Stergios Boussios

    (Department of Palliative Care, Guy’s and St Thomas’ Hospital, London SE1 9RT, UK
    King’s College London, Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, London SE1 9RT, UK
    AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece)

Abstract

Epithelial ovarian cancer (EOC) is one of the cancers most influenced by hereditary factors. A fourth to a fifth of unselected EOC patients carry pathogenic variants (PVs) in a number of genes, the majority of which encode for proteins involved in DNA mismatch repair (MMR) pathways. PVs in BRCA1 and BRCA2 genes are responsible for a substantial fraction of hereditary EOC. In addition, PV genes involved in the MMR pathway account for 10–15% of hereditary EOC. The identification of women with homologous recombination (HR)-deficient EOCs has significant clinical implications, concerning chemotherapy regimen planning and development as well as the use of targeted therapies such as poly(ADP-ribose) polymerase (PARP) inhibitors. With several genes involved, the complexity of genetic testing increases. In this context, next-generation sequencing (NGS) allows testing for multiple genes simultaneously with a rapid turnaround time. In this review, we discuss the EOC risk assessment in the era of NGS.

Suggested Citation

  • Sidrah Shah & Alison Cheung & Mikolaj Kutka & Matin Sheriff & Stergios Boussios, 2022. "Epithelial Ovarian Cancer: Providing Evidence of Predisposition Genes," IJERPH, MDPI, vol. 19(13), pages 1-14, July.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:8113-:d:854056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/13/8113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/13/8113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. S. de Bono & Alan Ashworth, 2010. "Translating cancer research into targeted therapeutics," Nature, Nature, vol. 467(7315), pages 543-549, September.
    2. Alison Cheung & Sidrah Shah & Jack Parker & Pavandeep Soor & Anu Limbu & Matin Sheriff & Stergios Boussios, 2022. "Non-Epithelial Ovarian Cancers: How Much Do We Really Know?," IJERPH, MDPI, vol. 19(3), pages 1-18, January.
    3. Helen E. Bryant & Niklas Schultz & Huw D. Thomas & Kayan M. Parker & Dan Flower & Elena Lopez & Suzanne Kyle & Mark Meuth & Nicola J. Curtin & Thomas Helleday, 2005. "Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase," Nature, Nature, vol. 434(7035), pages 913-917, April.
    4. Stephen P. Jackson & Jiri Bartek, 2009. "The DNA-damage response in human biology and disease," Nature, Nature, vol. 461(7267), pages 1071-1078, October.
    5. Hannah Farmer & Nuala McCabe & Christopher J. Lord & Andrew N. J. Tutt & Damian A. Johnson & Tobias B. Richardson & Manuela Santarosa & Krystyna J. Dillon & Ian Hickson & Charlotte Knights & Niall M. , 2005. "Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy," Nature, Nature, vol. 434(7035), pages 917-921, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iqra Saani & Nitish Raj & Raja Sood & Shahbaz Ansari & Haider Abbas Mandviwala & Elisabet Sanchez & Stergios Boussios, 2023. "Clinical Challenges in the Management of Malignant Ovarian Germ Cell Tumours," IJERPH, MDPI, vol. 20(12), pages 1-16, June.
    2. Aruni Ghose & Anita Bolina & Ishika Mahajan & Syed Ahmer Raza & Miranda Clarke & Abhinanda Pal & Elisabet Sanchez & Kathrine Sofia Rallis & Stergios Boussios, 2022. "Hereditary Ovarian Cancer: Towards a Cost-Effective Prevention Strategy," IJERPH, MDPI, vol. 19(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Dai & Shuyu Zheng & Matías M. Falco & Jie Bao & Johanna Eriksson & Sanna Pikkusaari & Sofia Forstén & Jing Jiang & Wenyu Wang & Luping Gao & Fernando Perez-Villatoro & Olli Dufva & Khalid Saeed & , 2024. "Tracing back primed resistance in cancer via sister cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Takuya Tsujino & Tomoaki Takai & Kunihiko Hinohara & Fu Gui & Takeshi Tsutsumi & Xiao Bai & Chenkui Miao & Chao Feng & Bin Gui & Zsofia Sztupinszki & Antoine Simoneau & Ning Xie & Ladan Fazli & Xuesen, 2023. "CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Anne Margriet Heijink & Colin Stok & David Porubsky & Eleni Maria Manolika & Jurrian K. Kanter & Yannick P. Kok & Marieke Everts & H. Rudolf Boer & Anastasia Audrey & Femke J. Bakker & Elles Wierenga , 2022. "Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Lee Shaashua & Aviad Ben-Shmuel & Meirav Pevsner-Fischer & Gil Friedman & Oshrat Levi-Galibov & Subhiksha Nandakumar & Debra Barki & Reinat Nevo & Lauren E. Brown & Wenhan Zhang & Yaniv Stein & Chen L, 2022. "BRCA mutational status shapes the stromal microenvironment of pancreatic cancer linking clusterin expression in cancer associated fibroblasts with HSF1 signaling," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    5. Hanrui Zhang & Julian Kreis & Sven-Eric Schelhorn & Heike Dahmen & Thomas Grombacher & Michael Zühlsdorf & Frank T. Zenke & Yuanfang Guan, 2023. "Mapping combinatorial drug effects to DNA damage response kinase inhibitors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Zita Gál & Stavroula Boukoura & Kezia Catharina Oxe & Sara Badawi & Blanca Nieto & Lea Milling Korsholm & Sille Blangstrup Geisler & Ekaterina Dulina & Anna Vestergaard Rasmussen & Christina Dahl & We, 2024. "Hyper-recombination in ribosomal DNA is driven by long-range resection-independent RAD51 accumulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Ilaria Rosso & Corey Jones-Weinert & Francesca Rossiello & Matteo Cabrini & Silvia Brambillasca & Leonel Munoz-Sagredo & Zeno Lavagnino & Emanuele Martini & Enzo Tedone & Massimiliano Garre’ & Julio A, 2023. "Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Neil J. Rzechorzek & Simone Kunzelmann & Andrew G. Purkiss & Mariana Silva Dos Santos & James I. MacRae & Ian A. Taylor & Kasper Fugger & Stephen C. West, 2023. "Mechanism of substrate hydrolysis by the human nucleotide pool sanitiser DNPH1," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Susan Kilgas & Aleem Syed & Patrick Toolan-Kerr & Michelle L. Swift & Shrabasti Roychoudhury & Aniruddha Sarkar & Sarah Wilkins & Mikayla Quigley & Anna R. Poetsch & Maria Victoria Botuyan & Gaofeng C, 2024. "NEAT1 modulates the TIRR/53BP1 complex to maintain genome integrity," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Halh Al-Serori & Franziska Ferk & Michael Kundi & Andrea Bileck & Christopher Gerner & Miroslav Mišík & Armen Nersesyan & Monika Waldherr & Manuel Murbach & Tamara T Lah & Christel Herold-Mende & Andr, 2018. "Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-17, April.
    11. Heathcliff Dorado García & Fabian Pusch & Yi Bei & Jennifer Stebut & Glorymar Ibáñez & Kristina Guillan & Koshi Imami & Dennis Gürgen & Jana Rolff & Konstantin Helmsauer & Stephanie Meyer-Liesener & N, 2022. "Therapeutic targeting of ATR in alveolar rhabdomyosarcoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Sundarraj Jayakumar & Manthan Patel & Fanny Boulet & Hadicha Aziz & Greg N. Brooke & Hemanth Tummala & Madapura M. Pradeepa, 2024. "PSIP1/LEDGF reduces R-loops at transcription sites to maintain genome integrity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Megan E. Luedeman & Susanna Stroik & Wanjuan Feng & Adam J. Luthman & Gaorav P. Gupta & Dale A. Ramsden, 2022. "Poly(ADP) ribose polymerase promotes DNA polymerase theta-mediated end joining by activation of end resection," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Zizhi Tang & Ming Zeng & Xiaojun Wang & Chang Guo & Peng Yue & Xiaohu Zhang & Huiqiang Lou & Jun Chen & Dezhi Mu & Daochun Kong & Antony M. Carr & Cong Liu, 2022. "Synthetic lethality between TP53 and ENDOD1," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Samuel D. Chauvin & Shoichiro Ando & Joe A. Holley & Atsushi Sugie & Fang R. Zhao & Subhajit Poddar & Rei Kato & Cathrine A. Miner & Yohei Nitta & Siddharth R. Krishnamurthy & Rie Saito & Yue Ning & Y, 2024. "Inherited C-terminal TREX1 variants disrupt homology-directed repair to cause senescence and DNA damage phenotypes in Drosophila, mice, and humans," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    16. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    17. Arindam Datta & Kajal Biswas & Joshua A. Sommers & Haley Thompson & Sanket Awate & Claudia M. Nicolae & Tanay Thakar & George-Lucian Moldovan & Robert H. Shoemaker & Shyam K. Sharan & Robert M. Brosh, 2021. "WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    18. Meng Wang & Satoshi Fukushima & Yi-Shuan Sheen & Egle Ramelyte & Noel Cruz-Pacheco & Chenxu Shi & Shanshan Liu & Ishani Banik & Jamie D. Aquino & Martin Sangueza Acosta & Mitchell Levesque & Reinhard , 2024. "The genetic evolution of acral melanoma," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Jenny Kaur Singh & Rebecca Smith & Magdalena B. Rother & Anton J. L. Groot & Wouter W. Wiegant & Kees Vreeken & Ostiane D’Augustin & Robbert Q. Kim & Haibin Qian & Przemek M. Krawczyk & Román González, 2021. "Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    20. Miho M. Suzuki & Kenta Iijima & Koichi Ogami & Keiko Shinjo & Yoshiteru Murofushi & Jingqi Xie & Xuebing Wang & Yotaro Kitano & Akira Mamiya & Yuji Kibe & Tatsunori Nishimura & Fumiharu Ohka & Ryuta S, 2023. "TUG1-mediated R-loop resolution at microsatellite loci as a prerequisite for cancer cell proliferation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:8113-:d:854056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.