IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002303.html
   My bibliography  Save this article

A Hierarchical Neuronal Model for Generation and Online Recognition of Birdsongs

Author

Listed:
  • Izzet B Yildiz
  • Stefan J Kiebel

Abstract

The neuronal system underlying learning, generation and recognition of song in birds is one of the best-studied systems in the neurosciences. Here, we use these experimental findings to derive a neurobiologically plausible, dynamic, hierarchical model of birdsong generation and transform it into a functional model of birdsong recognition. The generation model consists of neuronal rate models and includes critical anatomical components like the premotor song-control nucleus HVC (proper name), the premotor nucleus RA (robust nucleus of the arcopallium), and a model of the syringeal and respiratory organs. We use Bayesian inference of this dynamical system to derive a possible mechanism for how birds can efficiently and robustly recognize the songs of their conspecifics in an online fashion. Our results indicate that the specific way birdsong is generated enables a listening bird to robustly and rapidly perceive embedded information at multiple time scales of a song. The resulting mechanism can be useful for investigating the functional roles of auditory recognition areas and providing predictions for future birdsong experiments. Author Summary: How do birds communicate via their songs? Investigating this question may not only lead to a better understanding of communication via birdsong, but many believe that the answer will also give us hints about how humans decode speech from complex sound wave modulations. In birds, the output and neuronal responses of the song generation system can be measured precisely and this has resulted in a considerable body of experimental findings. We used these findings to assemble a complete model of birdsong generation and use it as the basis for constructing a potentially neurobiologically plausible, artificial recognition system based on state-of-the-art Bayesian inference techniques. Our artificial system resembles the real birdsong system when performing recognition tasks and may be used as a functional model to explain and predict experimental findings in song recognition.

Suggested Citation

  • Izzet B Yildiz & Stefan J Kiebel, 2011. "A Hierarchical Neuronal Model for Generation and Online Recognition of Birdsongs," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-18, December.
  • Handle: RePEc:plo:pcbi00:1002303
    DOI: 10.1371/journal.pcbi.1002303
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002303
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002303&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.