Author
Listed:
- Stefan J Kiebel
- Katharina von Kriegstein
- Jean Daunizeau
- Karl J Friston
Abstract
The brain's decoding of fast sensory streams is currently impossible to emulate, even approximately, with artificial agents. For example, robust speech recognition is relatively easy for humans but exceptionally difficult for artificial speech recognition systems. In this paper, we propose that recognition can be simplified with an internal model of how sensory input is generated, when formulated in a Bayesian framework. We show that a plausible candidate for an internal or generative model is a hierarchy of ‘stable heteroclinic channels’. This model describes continuous dynamics in the environment as a hierarchy of sequences, where slower sequences cause faster sequences. Under this model, online recognition corresponds to the dynamic decoding of causal sequences, giving a representation of the environment with predictive power on several timescales. We illustrate the ensuing decoding or recognition scheme using synthetic sequences of syllables, where syllables are sequences of phonemes and phonemes are sequences of sound-wave modulations. By presenting anomalous stimuli, we find that the resulting recognition dynamics disclose inference at multiple time scales and are reminiscent of neuronal dynamics seen in the real brain.Author Summary: Despite tremendous advances in neuroscience, we cannot yet build machines that recognize the world as effortlessly as we do. One reason might be that there are computational approaches to recognition that have not yet been exploited. Here, we demonstrate that the ability to recognize temporal sequences might play an important part. We show that an artificial decoding device can extract natural speech sounds from sound waves if speech is generated as dynamic and transient sequences of sequences. In principle, this means that artificial recognition can be implemented robustly and online using dynamic systems theory and Bayesian inference.
Suggested Citation
Stefan J Kiebel & Katharina von Kriegstein & Jean Daunizeau & Karl J Friston, 2009.
"Recognizing Sequences of Sequences,"
PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-13, August.
Handle:
RePEc:plo:pcbi00:1000464
DOI: 10.1371/journal.pcbi.1000464
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000464. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.