IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000211.html
   My bibliography  Save this article

Hierarchical Models in the Brain

Author

Listed:
  • Karl Friston

Abstract

This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain. Author Summary: Models are essential to make sense of scientific data, but they may also play a central role in how we assimilate sensory information. In this paper, we introduce a general model that generates or predicts diverse sorts of data. As such, it subsumes many common models used in data analysis and statistical testing. We show that this model can be fitted to data using a single and generic procedure, which means we can place a large array of data analysis procedures within the same unifying framework. Critically, we then show that the brain has, in principle, the machinery to implement this scheme. This suggests that the brain has the capacity to analyse sensory input using the most sophisticated algorithms currently employed by scientists and possibly models that are even more elaborate. The implications of this work are that we can understand the structure and function of the brain as an inference machine. Furthermore, we can ascribe various aspects of brain anatomy and physiology to specific computational quantities, which may help understand both normal brain function and how aberrant inferences result from pathological processes associated with psychiatric disorders.

Suggested Citation

  • Karl Friston, 2008. "Hierarchical Models in the Brain," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-24, November.
  • Handle: RePEc:plo:pcbi00:1000211
    DOI: 10.1371/journal.pcbi.1000211
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000211
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000211&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    2. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    3. J. M. Hupé & A. C. James & B. R. Payne & S. G. Lomber & P. Girard & J. Bullier, 1998. "Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons," Nature, Nature, vol. 394(6695), pages 784-787, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adeeti Aggarwal & Connor Brennan & Jennifer Luo & Helen Chung & Diego Contreras & Max B. Kelz & Alex Proekt, 2022. "Visual evoked feedforward–feedback traveling waves organize neural activity across the cortical hierarchy in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Mateus Joffily & Giorgio Coricelli, 2013. "Emotional valence and the free-energy principle," Post-Print halshs-00862392, HAL.
    3. John C. Boik, 2020. "Science-Driven Societal Transformation, Part I: Worldview," Sustainability, MDPI, vol. 12(17), pages 1-28, August.
    4. Micha Heilbron & Florent Meyniel, 2019. "Confidence resets reveal hierarchical adaptive learning in humans," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-24, April.
    5. Dileep George & Jeff Hawkins, 2009. "Towards a Mathematical Theory of Cortical Micro-circuits," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-26, October.
    6. Boris Vladimirskiy & Robert Urbanczik & Walter Senn, 2015. "Hierarchical Novelty-Familiarity Representation in the Visual System by Modular Predictive Coding," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-19, December.
    7. Falk Lieder & Klaas E Stephan & Jean Daunizeau & Marta I Garrido & Karl J Friston, 2013. "A Neurocomputational Model of the Mismatch Negativity," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    8. Adam Safron, 2019. "Multilevel evolutionary developmental optimization (MEDO): A theoretical framework for understanding preferences and selection dynamics," Papers 1910.13443, arXiv.org, revised Nov 2019.
    9. Jaroslav Vítků & Petr Dluhoš & Joseph Davidson & Matěj Nikl & Simon Andersson & Přemysl Paška & Jan Šinkora & Petr Hlubuček & Martin Stránský & Martin Hyben & Martin Poliak & Jan Feyereisl & Marek Ros, 2020. "ToyArchitecture: Unsupervised learning of interpretable models of the environment," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-50, May.
    10. David Balduzzi & Giulio Tononi, 2009. "Qualia: The Geometry of Integrated Information," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-24, August.
    11. Biswa Sengupta & Arturo Tozzi & Gerald K Cooray & Pamela K Douglas & Karl J Friston, 2016. "Towards a Neuronal Gauge Theory," PLOS Biology, Public Library of Science, vol. 14(3), pages 1-12, March.
    12. Annika Garlichs & Helen Blank, 2024. "Prediction error processing and sharpening of expected information across the face-processing hierarchy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Ünsal Özdilek, 2021. "Sensing Happiness in Senseless Information," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 16(5), pages 2059-2084, October.
    14. Alexander Ororbia & Daniel Kifer, 2022. "The neural coding framework for learning generative models," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zihan & Daeipour, Mohamad & Xu, Hongyi, 2023. "Quantification and propagation of Aleatoric uncertainties in topological structures," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    3. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    4. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    5. Markussen, Bo, 2009. "Laplace approximation of transition densities posed as Brownian expectations," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 208-231, January.
    6. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    7. Chen, Tao & Martin, Elaine & Montague, Gary, 2009. "Robust probabilistic PCA with missing data and contribution analysis for outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3706-3716, August.
    8. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    9. Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
    10. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    11. Cook, R. Dennis, 2022. "A slice of multivariate dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    12. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    13. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    14. Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
    15. Ligon, Ethan, 2017. "Estimating household welfare from disaggregate expenditures," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt5gc4h1fm, Department of Agricultural & Resource Economics, UC Berkeley.
    16. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    17. Marconi, Gabriele, 2014. "European higher education policies and the problem of estimating a complex model with a small cross-section," MPRA Paper 87600, University Library of Munich, Germany.
    18. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    19. DiCesare, Joe & Mcleish, Don, 2008. "Simulation of jump diffusions and the pricing of options," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 316-326, December.
    20. Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 375-413, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.