IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v456y2008i7219d10.1038_nature07448.html
   My bibliography  Save this article

Using temperature to analyse temporal dynamics in the songbird motor pathway

Author

Listed:
  • Michael A. Long

    (McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA)

  • Michale S. Fee

    (McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA)

Abstract

Many complex behaviours, like speech or music, have a hierarchical organization with structure on many timescales, but it is not known how the brain controls the timing of behavioural sequences, or whether different circuits control different timescales of the behaviour. Here we address these issues by using temperature to manipulate the biophysical dynamics in different regions of the songbird forebrain involved in song production. We find that cooling the premotor nucleus HVC (formerly known as the high vocal centre) slows song speed across all timescales by up to 45 per cent but only slightly alters the acoustic structure, whereas cooling the downstream motor nucleus RA (robust nucleus of the arcopallium) has no observable effect on song timing. Our observations suggest that dynamics within HVC are involved in the control of song timing, perhaps through a chain-like organization. Local manipulation of brain temperature should be broadly applicable to the identification of neural circuitry that controls the timing of behavioural sequences and, more generally, to the study of the origin and role of oscillatory and other forms of brain dynamics in neural systems.

Suggested Citation

  • Michael A. Long & Michale S. Fee, 2008. "Using temperature to analyse temporal dynamics in the songbird motor pathway," Nature, Nature, vol. 456(7219), pages 189-194, November.
  • Handle: RePEc:nat:nature:v:456:y:2008:i:7219:d:10.1038_nature07448
    DOI: 10.1038/nature07448
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07448
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dezhe Z Jin & Alexay A Kozhevnikov, 2011. "A Compact Statistical Model of the Song Syntax in Bengalese Finch," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-19, March.
    2. Matthew A Slayton & Juan L Romero-Sosa & Katrina Shore & Dean V Buonomano & Indre V Viskontas, 2020. "Musical expertise generalizes to superior temporal scaling in a Morse code tapping task," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-9, January.
    3. Patrick D McMullen & Erin Z Aprison & Peter B Winter & Luis A N Amaral & Richard I Morimoto & Ilya Ruvinsky, 2012. "Macro-level Modeling of the Response of C. elegans Reproduction to Chronic Heat Stress," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-12, January.
    4. Benjamin M. Zemel & Alexander A. Nevue & Andre Dagostin & Peter V. Lovell & Claudio V. Mello & Henrique Gersdorff, 2021. "Resurgent Na+ currents promote ultrafast spiking in projection neurons that drive fine motor control," Nature Communications, Nature, vol. 12(1), pages 1-23, December.
    5. Linda Bistere & Carlos M. Gomez-Guzman & Yirong Xiong & Daniela Vallentin, 2024. "Female calls promote song learning in male juvenile zebra finches," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Fabian Heim & Ezequiel Mendoza & Avani Koparkar & Daniela Vallentin, 2024. "Disinhibition enables vocal repertoire expansion after a critical period," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:456:y:2008:i:7219:d:10.1038_nature07448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.