IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0016589.html
   My bibliography  Save this article

Complex Processes from Dynamical Architectures with Time-Scale Hierarchy

Author

Listed:
  • Dionysios Perdikis
  • Raoul Huys
  • Viktor Jirsa

Abstract

The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes.

Suggested Citation

  • Dionysios Perdikis & Raoul Huys & Viktor Jirsa, 2011. "Complex Processes from Dynamical Architectures with Time-Scale Hierarchy," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-12, February.
  • Handle: RePEc:plo:pone00:0016589
    DOI: 10.1371/journal.pone.0016589
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016589
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0016589&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0016589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mikhail I Rabinovich & Ramón Huerta & Pablo Varona & Valentin S Afraimovich, 2008. "Transient Cognitive Dynamics, Metastability, and Decision Making," PLOS Computational Biology, Public Library of Science, vol. 4(5), pages 1-9, May.
    2. Karl Friston, 2008. "Hierarchical Models in the Brain," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-24, November.
    3. Raoul Huys & Breanna E Studenka & Nicole L Rheaume & Howard N Zelaznik & Viktor K Jirsa, 2008. "Distinct Timing Mechanisms Produce Discrete and Continuous Movements," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-8, April.
    4. Stefan J Kiebel & Jean Daunizeau & Karl J Friston, 2008. "A Hierarchy of Time-Scales and the Brain," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Ibáñez-Gijón & David M Jacobs, 2012. "Decision, Sensation, and Habituation: A Multi-Layer Dynamic Field Model for Inhibition of Return," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-9, March.
    2. M Marmaduke Woodman & Viktor K Jirsa, 2013. "Emergent Dynamics from Spiking Neuron Networks through Symmetry Breaking of Connectivity," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan J Kiebel & Katharina von Kriegstein & Jean Daunizeau & Karl J Friston, 2009. "Recognizing Sequences of Sequences," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-13, August.
    2. Dionysios Perdikis & Raoul Huys & Viktor K Jirsa, 2011. "Time Scale Hierarchies in the Functional Organization of Complex Behaviors," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-18, September.
    3. Izzet B Yildiz & Stefan J Kiebel, 2011. "A Hierarchical Neuronal Model for Generation and Online Recognition of Birdsongs," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-18, December.
    4. Micha Heilbron & Florent Meyniel, 2019. "Confidence resets reveal hierarchical adaptive learning in humans," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-24, April.
    5. John C. Boik, 2020. "Science-Driven Societal Transformation, Part I: Worldview," Sustainability, MDPI, vol. 12(17), pages 1-28, August.
    6. Mateus Joffily & Giorgio Coricelli, 2013. "Emotional Valence and the Free-Energy Principle," Post-Print halshs-00834063, HAL.
    7. Falk Lieder & Klaas E Stephan & Jean Daunizeau & Marta I Garrido & Karl J Friston, 2013. "A Neurocomputational Model of the Mismatch Negativity," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    8. Manuel Varlet & Ludovic Marin & Johann Issartel & R C Schmidt & Benoît G Bardy, 2012. "Continuity of Visual and Auditory Rhythms Influences Sensorimotor Coordination," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.
    9. Okano, Masahiro & Kurebayashi, Wataru & Shinya, Masahiro & Kudo, Kazutoshi, 2019. "Hybrid dynamics in a paired rhythmic synchronization–continuation task," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 625-638.
    10. J A Scott Kelso & Gonzalo C de Guzman & Colin Reveley & Emmanuelle Tognoli, 2009. "Virtual Partner Interaction (VPI): Exploring Novel Behaviors via Coordination Dynamics," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-11, June.
    11. Jaroslav Vítků & Petr Dluhoš & Joseph Davidson & Matěj Nikl & Simon Andersson & Přemysl Paška & Jan Šinkora & Petr Hlubuček & Martin Stránský & Martin Hyben & Martin Poliak & Jan Feyereisl & Marek Ros, 2020. "ToyArchitecture: Unsupervised learning of interpretable models of the environment," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-50, May.
    12. Tomoki Kurikawa & Kunihiko Kaneko, 2013. "Embedding Responses in Spontaneous Neural Activity Shaped through Sequential Learning," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-15, March.
    13. Ünsal Özdilek, 2021. "Sensing Happiness in Senseless Information," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 16(5), pages 2059-2084, October.
    14. Adeeti Aggarwal & Connor Brennan & Jennifer Luo & Helen Chung & Diego Contreras & Max B. Kelz & Alex Proekt, 2022. "Visual evoked feedforward–feedback traveling waves organize neural activity across the cortical hierarchy in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Dileep George & Jeff Hawkins, 2009. "Towards a Mathematical Theory of Cortical Micro-circuits," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-26, October.
    16. M Marmaduke Woodman & Viktor K Jirsa, 2013. "Emergent Dynamics from Spiking Neuron Networks through Symmetry Breaking of Connectivity," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-12, May.
    17. Pauline Tranchant & Dominique T Vuvan & Isabelle Peretz, 2016. "Keeping the Beat: A Large Sample Study of Bouncing and Clapping to Music," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-19, July.
    18. Adam Ponzi & Jeffery R Wickens, 2013. "Optimal Balance of the Striatal Medium Spiny Neuron Network," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-21, April.
    19. David Balduzzi & Giulio Tononi, 2009. "Qualia: The Geometry of Integrated Information," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-24, August.
    20. Boris Vladimirskiy & Robert Urbanczik & Walter Senn, 2015. "Hierarchical Novelty-Familiarity Representation in the Visual System by Modular Predictive Coding," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0016589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.