IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42231-4.html
   My bibliography  Save this article

Dynamic neural representations of memory and space during human ambulatory navigation

Author

Listed:
  • Sabrina L. L. Maoz

    (University of California, Los Angeles
    University of California, Los Angeles
    University of California, Los Angeles)

  • Matthias Stangl

    (University of California, Los Angeles)

  • Uros Topalovic

    (University of California, Los Angeles)

  • Daniel Batista

    (University of California, Los Angeles)

  • Sonja Hiller

    (University of California, Los Angeles)

  • Zahra M. Aghajan

    (University of California, Los Angeles)

  • Barbara Knowlton

    (University of California, Los Angeles)

  • John Stern

    (University of California, Los Angeles)

  • Jean-Philippe Langevin

    (Neurosurgery Service, Department of Veterans Affairs Greater Los Angeles Healthcare System
    University of California, Los Angeles)

  • Itzhak Fried

    (University of California, Los Angeles
    University of California, Los Angeles
    Tel-Aviv University)

  • Dawn Eliashiv

    (University of California, Los Angeles)

  • Nanthia Suthana

    (University of California, Los Angeles
    University of California, Los Angeles
    University of California, Los Angeles
    University of California, Los Angeles)

Abstract

Our ability to recall memories of personal experiences is an essential part of daily life. These episodic memories often involve movement through space and thus require continuous encoding of one’s position relative to the surrounding environment. The medial temporal lobe (MTL) is thought to be critically involved, based on studies in freely moving rodents and stationary humans. However, it remains unclear if and how the MTL represents both space and memory especially during physical navigation, given challenges associated with deep brain recordings in humans during movement. We recorded intracranial electroencephalographic (iEEG) activity while participants completed an ambulatory spatial memory task within an immersive virtual reality environment. MTL theta activity was modulated by successful memory retrieval or spatial positions within the environment, depending on dynamically changing behavioral goals. Altogether, these results demonstrate how human MTL oscillations can represent both memory and space in a temporally flexible manner during freely moving navigation.

Suggested Citation

  • Sabrina L. L. Maoz & Matthias Stangl & Uros Topalovic & Daniel Batista & Sonja Hiller & Zahra M. Aghajan & Barbara Knowlton & John Stern & Jean-Philippe Langevin & Itzhak Fried & Dawn Eliashiv & Nanth, 2023. "Dynamic neural representations of memory and space during human ambulatory navigation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42231-4
    DOI: 10.1038/s41467-023-42231-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42231-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42231-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Véronique D. Bohbot & Milagros S. Copara & Jean Gotman & Arne D. Ekstrom, 2017. "Low-frequency theta oscillations in the human hippocampus during real-world and virtual navigation," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    2. Matthias Stangl & Uros Topalovic & Cory S. Inman & Sonja Hiller & Diane Villaroman & Zahra M. Aghajan & Leonardo Christov-Moore & Nicholas R. Hasulak & Vikram R. Rao & Casey H. Halpern & Dawn Eliashiv, 2021. "Boundary-anchored neural mechanisms of location-encoding for self and others," Nature, Nature, vol. 589(7842), pages 420-425, January.
    3. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    4. Jonathan Miller & Andrew J. Watrous & Melina Tsitsiklis & Sang Ah Lee & Sameer A. Sheth & Catherine A. Schevon & Elliot H. Smith & Michael R. Sperling & Ashwini Sharan & Ali Akbar Asadi-Pooya & Gregor, 2018. "Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Anli A. Liu & Simon Henin & Saman Abbaspoor & Anatol Bragin & Elizabeth A. Buffalo & Jordan S. Farrell & David J. Foster & Loren M. Frank & Tamara Gedankien & Jean Gotman & Jennifer A. Guidera & Kari , 2022. "A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Thibault Cholvin & Marlene Bartos, 2022. "Hemisphere-specific spatial representation by hippocampal granule cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Soraya L. S. Dunn & Stephen M. Town & Jennifer K. Bizley & Daniel Bendor, 2022. "Behaviourally modulated hippocampal theta oscillations in the ferret persist during both locomotion and immobility," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Laurenz Muessig & Fabio Ribeiro Rodrigues & Tale L. Bjerknes & Benjamin W. Towse & Caswell Barry & Neil Burgess & Edvard I. Moser & May-Britt Moser & Francesca Cacucci & Thomas J. Wills, 2024. "Environment geometry alters subiculum boundary vector cell receptive fields in adulthood and early development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    7. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Noga Mosheiff & Haggai Agmon & Avraham Moriel & Yoram Burak, 2017. "An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-19, June.
    9. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    10. Lukas M. von Ziegler & Amalia Floriou-Servou & Rebecca Waag & Rebecca R. Gupta & Oliver Sturman & Katharina Gapp & Christina A. Maat & Tobias Kockmann & Han-Yu Lin & Sian N. Duss & Mattia Privitera & , 2022. "Multiomic profiling of the acute stress response in the mouse hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    11. Louis-Emmanuel Martinet & Denis Sheynikhovich & Karim Benchenane & Angelo Arleo, 2011. "Spatial Learning and Action Planning in a Prefrontal Cortical Network Model," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-21, May.
    12. Florian Raudies & Michael E Hasselmo, 2012. "Modeling Boundary Vector Cell Firing Given Optic Flow as a Cue," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-17, June.
    13. Thomas Schreiner & Benjamin J. Griffiths & Merve Kutlu & Christian Vollmar & Elisabeth Kaufmann & Stefanie Quach & Jan Remi & Soheyl Noachtar & Tobias Staudigl, 2024. "Spindle-locked ripples mediate memory reactivation during human NREM sleep," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Avgar, Tal & Deardon, Rob & Fryxell, John M., 2013. "An empirically parameterized individual based model of animal movement, perception, and memory," Ecological Modelling, Elsevier, vol. 251(C), pages 158-172.
    15. Qiming Shao & Ligu Chen & Xiaowan Li & Miao Li & Hui Cui & Xiaoyue Li & Xinran Zhao & Yuying Shi & Qiang Sun & Kaiyue Yan & Guangfu Wang, 2024. "A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Fabian Kessler & Julia Frankenstein & Constantin A. Rothkopf, 2024. "Human navigation strategies and their errors result from dynamic interactions of spatial uncertainties," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Alexander Thomas Keinath, 2016. "The Preferred Directions of Conjunctive Grid X Head Direction Cells in the Medial Entorhinal Cortex Are Periodically Organized," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-11, March.
    18. Federica Sigismondi & Yangwen Xu & Mattia Silvestri & Roberto Bottini, 2024. "Altered grid-like coding in early blind people," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Netto, Vinicius M. & Brigatti, Edgardo & Meirelles, João & Ribeiro, Fabiano L. & Pace, Bruno & Cacholas, Caio & Sanches, Patricia Mara, 2018. "Cities, from information to interaction," SocArXiv jgz5d, Center for Open Science.
    20. Davide Spalla & Alessandro Treves & Charlotte N. Boccara, 2022. "Angular and linear speed cells in the parahippocampal circuits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42231-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.