Author
Listed:
- Francisco J P Lopes
- Fernando M C Vieira
- David M Holloway
- Paulo M Bisch
- Alexander V Spirov
Abstract
During embryonic development, the positional information provided by concentration gradients of maternal factors directs pattern formation by providing spatially dependent cues for gene expression. In the fruit fly, Drosophila melanogaster, a classic example of this is the sharp on–off activation of the hunchback (hb) gene at midembryo, in response to local concentrations of the smooth anterior–posterior Bicoid (Bcd) gradient. The regulatory region for hb contains multiple binding sites for the Bcd protein as well as multiple binding sites for the Hb protein. Some previous studies have suggested that Bcd is sufficient for properly sharpened Hb expression, yet other evidence suggests a need for additional regulation. We experimentally quantified the dynamics of hb gene expression in flies that were wild-type, were mutant for hb self-regulation or Bcd binding, or contained an artificial promoter construct consisting of six Bcd and two Hb sites. In addition to these experiments, we developed a reaction–diffusion model of hb transcription, with Bcd cooperative binding and hb self-regulation, and used Zero Eigenvalue Analysis to look for multiple stationary states in the reaction network. Our model reproduces the hb developmental dynamics and correctly predicts the mutant patterns. Analysis of our model indicates that the Hb sharpness can be produced by spatial bistability, in which hb self-regulation produces two stable levels of expression. In the absence of self-regulation, the bistable behavior vanishes and Hb sharpness is disrupted. Bcd cooperative binding affects the position where bistability occurs but is not itself sufficient for a sharp Hb pattern. Our results show that the control of Hb sharpness and positioning, by hb self-regulation and Bcd cooperativity, respectively, are separate processes that can be altered independently. Our model, which matches the changes in Hb position and sharpness observed in different experiments, provides a theoretical framework for understanding the data and in particular indicates that spatial bistability can play a central role in threshold-dependent reading mechanisms of positional information.Author Summary: Pattern formation during embryonic development, or morphogenesis, is one of the most intriguing problems in biology, entailing the sequence of processes by which a relatively simple system, the fertilized egg, becomes a mature organism. In these processes, the genetic information, stored at the molecular scale in the DNA, is translated into the macroscopic spatial expression patterns that precede the tissue–organ scale of body organization. It can also be understood as a flux of information from the genetic to the organ–system level. In the fruit fly Drosophila melanogaster, one of the early processes during its embryonic development is the formation of the sharp Hunchback protein pattern. To generate this pattern, the hunchback gene interprets the position-dependent information in the shallow maternal Bicoid gradient and converts it into the sharp Hunchback protein pattern. We propose that bistability in the dynamics of hunchback gene regulation can account for this information reading process, and we show that this bistable mechanism can be produced by the ability of this gene to regulate its own expression. The solution of this problem offers new approaches to understand the phenomenon of morphogenesis.
Suggested Citation
Francisco J P Lopes & Fernando M C Vieira & David M Holloway & Paulo M Bisch & Alexander V Spirov, 2008.
"Spatial Bistability Generates hunchback Expression Sharpness in the Drosophila Embryo,"
PLOS Computational Biology, Public Library of Science, vol. 4(9), pages 1-14, September.
Handle:
RePEc:plo:pcbi00:1000184
DOI: 10.1371/journal.pcbi.1000184
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000184. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.