IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/1000420.html
   My bibliography  Save this article

The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis

Author

Listed:
  • Bernd Boehm
  • Henrik Westerberg
  • Gaja Lesnicar-Pucko
  • Sahdia Raja
  • Michael Rautschka
  • James Cotterell
  • Jim Swoger
  • James Sharpe

Abstract

Oriented cell behaviors likely have a more important role in limb bud elongation during development than previously suggested by the “growth-based morphogenesis” hypothesis.Although the vertebrate limb bud has been studied for decades as a model system for spatial pattern formation and cell specification, the cellular basis of its distally oriented elongation has been a relatively neglected topic by comparison. The conventional view is that a gradient of isotropic proliferation exists along the limb, with high proliferation rates at the distal tip and lower rates towards the body, and that this gradient is the driving force behind outgrowth. Here we test this hypothesis by combining quantitative empirical data sets with computer modelling to assess the potential role of spatially controlled proliferation rates in the process of directional limb bud outgrowth. In particular, we generate two new empirical data sets for the mouse hind limb—a numerical description of shape change and a quantitative 3D map of cell cycle times—and combine these with a new 3D finite element model of tissue growth. By developing a parameter optimization approach (which explores spatial patterns of tissue growth) our computer simulations reveal that the observed distribution of proliferation rates plays no significant role in controlling the distally extending limb shape, and suggests that directional cell activities are likely to be the driving force behind limb bud outgrowth. This theoretical prediction prompted us to search for evidence of directional cell orientations in the limb bud mesenchyme, and we thus discovered a striking highly branched and extended cell shape composed of dynamically extending and retracting filopodia, a distally oriented bias in Golgi position, and also a bias in the orientation of cell division. We therefore provide both theoretical and empirical evidence that limb bud elongation is achieved by directional cell activities, rather than a PD gradient of proliferation rates.Author Summary: Although the vertebrate limb bud has been studied for decades as a classical model system for the spatial control of cell fates, the question of how the limb bud physically elongates has been much less studied. One particular hypothesis has been dominant in the field, known either as the proliferation gradient hypothesis or growth-based morphogenesis. This states that elongation is achieved by distal cells (furthest from the body) being stimulated to divide faster than proximal cells. Importantly, this hypothesis does not propose any kind of oriented or directional cell behaviours—high distal rates of non-oriented proliferation are considered to be sufficient—and indeed several 2D computer simulations have reproduced this concept in silico. However, thus far quantitative data from the limb bud has not been incorporated into these models. Here, we extended computer simulations into 3D and incorporated quantitative data on both shape changes and proliferation rates. These new simulations demonstrated that gradients of non-oriented proliferation are unable to explain limb bud elongation. We thus experimentally tested for evidence of oriented cell behaviours and indeed found that the cell shape, Golgi orientation, and cell divisions all display a non-random bias during limb bud outgrowth. Our data run contrary to the proliferation gradient hypothesis, indicating instead that oriented cell behaviours are important for driving elongation.

Suggested Citation

  • Bernd Boehm & Henrik Westerberg & Gaja Lesnicar-Pucko & Sahdia Raja & Michael Rautschka & James Cotterell & Jim Swoger & James Sharpe, 2010. "The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis," PLOS Biology, Public Library of Science, vol. 8(7), pages 1-21, July.
  • Handle: RePEc:plo:pbio00:1000420
    DOI: 10.1371/journal.pbio.1000420
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1000420
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1000420&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.1000420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Popławski, Nikodem J. & Swat, Maciej & Scott Gens, J. & Glazier, James A., 2007. "Adhesion between cells, diffusion of growth factors, and elasticity of the AER produce the paddle shape of the chick limb," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 521-532.
    2. Johannes Jaeger & Svetlana Surkova & Maxim Blagov & Hilde Janssens & David Kosman & Konstantin N. Kozlov & Manu & Ekaterina Myasnikova & Carlos E. Vanario-Alonso & Maria Samsonova & David H. Sharp & J, 2004. "Dynamic control of positional information in the early Drosophila embryo," Nature, Nature, vol. 430(6997), pages 368-371, July.
    3. Andrew T. Dudley & María A. Ros & Clifford J. Tabin, 2002. "A re-examination of proximodistal patterning during vertebrate limb development," Nature, Nature, vol. 418(6897), pages 539-544, August.
    4. Ying Gong & Chunhui Mo & Scott E. Fraser, 2004. "Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation," Nature, Nature, vol. 430(7000), pages 689-693, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoshihiro Morishita & Sang-Woo Lee & Takayuki Suzuki & Hitoshi Yokoyama & Yasuhiro Kamei & Koji Tamura & Aiko Kawasumi-Kita, 2023. "An archetype and scaling of developmental tissue dynamics across species," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Richard Kennaway & Enrico Coen & Amelia Green & Andrew Bangham, 2011. "Generation of Diverse Biological Forms through Combinatorial Interactions between Tissue Polarity and Growth," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolja Becker & Eva Balsa-Canto & Damjan Cicin-Sain & Astrid Hoermann & Hilde Janssens & Julio R Banga & Johannes Jaeger, 2013. "Reverse-Engineering Post-Transcriptional Regulation of Gap Genes in Drosophila melanogaster," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-16, October.
    2. Ronald Thenius & Michael Bodi & Thomas Schmickl & Karl Crailsheim, 2013. "Novel method of virtual embryogenesis for structuring Artificial Neural Network controllers," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 19(4), pages 375-387.
    3. Sebastian A Sandersius & Manli Chuai & Cornelis J Weijer & Timothy J Newman, 2011. "Correlating Cell Behavior with Tissue Topology in Embryonic Epithelia," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-11, April.
    4. Sofia Sedas Perez & Caitlin McQueen & Holly Stainton & Joseph Pickering & Kavitha Chinnaiya & Patricia Saiz-Lopez & Marysia Placzek & Maria A. Ros & Matthew Towers, 2023. "Fgf signalling triggers an intrinsic mesodermal timer that determines the duration of limb patterning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Maksat Ashyraliyev & Ken Siggens & Hilde Janssens & Joke Blom & Michael Akam & Johannes Jaeger, 2009. "Gene Circuit Analysis of the Terminal Gap Gene huckebein," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-16, October.
    6. Yingzi Li & Hammad Naveed & Sema Kachalo & Lisa X Xu & Jie Liang, 2012. "Mechanisms of Regulating Cell Topology in Proliferating Epithelia: Impact of Division Plane, Mechanical Forces, and Cell Memory," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-10, August.
    7. Jaeho Yoon & Jian Sun & Moonsup Lee & Yoo-Seok Hwang & Ira O. Daar, 2023. "Wnt4 and ephrinB2 instruct apical constriction via Dishevelled and non-canonical signaling," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Stradner, Jürgen & Thenius, Ronald & Zahadat, Payam & Hamann, Heiko & Crailsheim, Karl & Schmickl, Thomas, 2013. "Algorithmic requirements for swarm intelligence in differently coupled collective systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 100-114.
    9. Zeng, Wei & Thomas, Gilberto L & Glazier, James A, 2004. "Non-Turing stripes and spots: a novel mechanism for biological cell clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 482-494.
    10. Akshai Janardhana Kurup & Florian Bailet & Maximilian Fürthauer, 2024. "Myosin1G promotes Nodal signaling to control zebrafish left-right asymmetry," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. David M Holloway & Alexander V Spirov, 2017. "Transcriptional bursting in Drosophila development: Stochastic dynamics of eve stripe 2 expression," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-24, April.
    12. Debasish Mondal & Edward Dougherty & Abhishek Mukhopadhyay & Adria Carbo & Guang Yao & Jianhua Xing, 2014. "Systematic Reverse Engineering of Network Topologies: A Case Study of Resettable Bistable Cellular Responses," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-12, August.
    13. Theodore J Perkins & Johannes Jaeger & John Reinitz & Leon Glass, 2006. "Reverse Engineering the Gap Gene Network of Drosophila melanogaster," PLOS Computational Biology, Public Library of Science, vol. 2(5), pages 1-12, May.
    14. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    15. Carl Song & Hilary Phenix & Vida Abedi & Matthew Scott & Brian P Ingalls & Mads Kærn & Theodore J Perkins, 2010. "Estimating the Stochastic Bifurcation Structure of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-11, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1000420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.