IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36705-8.html
   My bibliography  Save this article

Size limits the sensitivity of kinetic schemes

Author

Listed:
  • Jeremy A. Owen

    (Massachusetts Institute of Technology
    Princeton University)

  • Jordan M. Horowitz

    (University of Michigan
    University of Michigan
    University of Michigan)

Abstract

Living things benefit from exquisite molecular sensitivity in many of their key processes, including DNA replication, transcription and translation, chemical sensing, and morphogenesis. At thermodynamic equilibrium, the basic biophysical mechanism for sensitivity is cooperative binding, for which it can be shown that the Hill coefficient, a sensitivity measure, cannot exceed the number of binding sites. Generalizing this fact, we find that for any kinetic scheme, at or away from thermodynamic equilibrium, a very simple structural quantity, the size of the support of a perturbation, always limits the effective Hill coefficient. We show how this bound sheds light on and unifies diverse sensitivity mechanisms, including kinetic proofreading and a nonequilibrium Monod-Wyman-Changeux (MWC) model proposed for the E. coli flagellar motor switch, representing in each case a simple, precise bridge between experimental observations and the models we write down. In pursuit of mechanisms that saturate the support bound, we find a nonequilibrium binding mechanism, nested hysteresis, with sensitivity exponential in the number of binding sites, with implications for our understanding of models of gene regulation and the function of biomolecular condensates.

Suggested Citation

  • Jeremy A. Owen & Jordan M. Horowitz, 2023. "Size limits the sensitivity of kinetic schemes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36705-8
    DOI: 10.1038/s41467-023-36705-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36705-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36705-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bahram Houchmandzadeh & Eric Wieschaus & Stanislas Leibler, 2002. "Establishment of developmental precision and proportions in the early Drosophila embryo," Nature, Nature, vol. 415(6873), pages 798-802, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roman Vetter & Dagmar Iber, 2022. "Precision of morphogen gradients in neural tube development," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Casper J Breuker & James S Patterson & Christian Peter Klingenberg, 2006. "A Single Basis for Developmental Buffering of Drosophila Wing Shape," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-7, December.
    3. David M Holloway & Francisco J P Lopes & Luciano da Fontoura Costa & Bruno A N Travençolo & Nina Golyandina & Konstantin Usevich & Alexander V Spirov, 2011. "Gene Expression Noise in Spatial Patterning: hunchback Promoter Structure Affects Noise Amplitude and Distribution in Drosophila Segmentation," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-18, February.
    4. Jingyuan Deng & Wei Wang & Long Jason Lu & Jun Ma, 2010. "A Two-Dimensional Simulation Model of the Bicoid Gradient in Drosophila," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-11, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36705-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.